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ABSTRACT

This dissertation explores Random Neural Networks (RNNs) in several as-

pects and their applications. First, Novel RNNs have been proposed for dimension-

ality reduction and visualization. Based on Extreme Learning Machines (ELMs) and

Self-Organizing Maps (SOMs) a new method is created to identify the important

variables and visualize the data. This technique reduces the curse of dimensionality

and improves furthermore the interpretability of the visualization and is tested on

real nursing survey datasets. ELM-SOM+ is an autoencoder created to preserves the

intrinsic quality of SOM and also brings continuity to the projection using two ELMs.

This new methodology shows considerable improvement over SOM on real datasets.

Second, as a Supervised Learning method, ELMs has been applied to the hierarchical

multiscale method to bridge the the molecular dynamics to continua. The method

is tested on simulation data and proven to be efficient for passing the information

from one scale to another. Lastly, the regularization of ELMs has been studied and

a new regularization algorithm for ELMs is created using a modified Lanczos Algo-

rithm. The Lanczos ELM on average divide computational time by 20 and reduce

the Normalized MSE by 14% comparing with regular ELMs.
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PUBLIC ABSTRACT

This dissertation explores a few meaningful questions in Machine learning. The

first question is: When we have a multi-feature dataset, which are the critical features,

that preserve more information of the data than other features. Knowing these critical

features will greatly improve the ability to interpret the data. A new method is

created to identify the critical features and visualize them, by using Extreme Learning

Machines (ELMs) and Self-Organizing Maps (SOMs). This method is tested on a real

survey dataset of nurses in Chapter 2.

The second question is: When we have a multi-dimensional dataset, is it

possible to reduce the dimensionality of the data but in the meantime preserve as

much information as possible? In Chapter 4, A novel autoencoder is developed that

conducts dimensionality reduction by preserving the data topology like SOMs but

more importantly brings continuity to the projections using two ELMs.

The third question is: When we are training an ELM, how to select the com-

plexity of the network? Usually, different datasets require different complexity of the

ELMs. There is no way to know what complexity to choose before the training and

validating process. In Chapter 5, a regularized ELM is proposed that could largely

speed up the process of validating and allows ELM to have a large amount of hidden

neurons without overfitting the problem.
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1

CHAPTER 1
INTRODUCTION

1.1 Motivation

In Machine Learning, dimensionality reduction is of great importance for sev-

eral reasons. Firstly, due to the curse of dimensionality, many machine learning

technics can result in overfitting problems, thus, high-dimensional data can be chal-

lenging to analyze [75,86,87]. Secondly, the computational load is correlated with the

number of the features of the data. Analyzing high-dimensional data can be Com-

putationally intensive [75]. Lastly, the high-dimensional data cannot be visualized

directly [75]. “Looking at the data” is crucial for data analysis, because it provides

the interpretability that allows us to make some sense of the data before carrying out

further analysis.

Generally, when analyzing high-dimensional data, the dimensionality of the

data is larger than necessary, especially when the variables are correlated. Another

common assumption is that the high-dimensional data is embedded on a lower dimen-

sional manifold [3]; therefor, the data can be transformed onto a lower dimensional

space, and the transformed data still preserve the information of the data, nearly

without information loss [86]. If the manifold of the data is in 3-D or less than 3-D

space, the original data can be precisely visualized by the transformed data in the

manifold space. Of course, in reality, the perfect manifold can not always be found,

thus the transformation is always associated with information loss, however, the in-
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formation loss can be minimized through the searching for the optimal manifold of

the data.

Feature selection is a rudimental way to perform dimensionality reduction [45].

The selected variables can only preserve part of the data structure [3]. The domain

knowledge is also usually required to perform such selection. In the process of data

analysis, feature selection is of great importance. It allows regression or classification

models to be robust, by filtering out the redundant or irrelevant data, which generally

exists in the training data. This is also thought as the noise reduction process. It is

achieved by selecting a subset of “relevant” features, and it builds the models upon

those “relevant” features only. As a result, the model becomes easier to learn (the

computational load is reduced), the generalization performances are improved and

the model can be easily interpreted.

Feature extraction is one of the main dimensionality reduction processes [7],

which builds derived values (features) from the original data. The derived features

usually come from some type of transformation of the data, projecting the data to

another (lower dimensional) space. The transformation can be linear or nonlinear [75].

Linear feature extraction methods works well when data is lying on the linear

subspace. Principal Components Analysis (PCA) [114] is a popular linear feature

extraction method, which is targeting on maximizing the variance of the data. Multi-

Dimensional Scaling (MDS) [79] is preserving the pair-wise distances of the data,

which yields to the same results as PCA [86] for linear MDS. Both methods perform

poorly when the data is lying on a (curved) nonlinear manifold, which can often be
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the case [75].

Methods for nonlinear dimensionality reduction can be further divided into two

groups: distance-preserving methods and topology-preserving methods [77]. Distance-

preserving methods include Sammon’s mapping [123], Curvilinear Component Analy-

sis (CCA) [30], Isomap (IM) [136,137], and Curvilinear Distance Analysis (CDA) [85].

Topology preservation methods are more powerful and, are at the same time, more

complex than distance-preserving methods [86], such as Generative Topographic Map-

ping (GTM) [17], Laplacian Eigenmaps (LE) [14,15], Growing Neural Gas algorithms

(GNG) [96], and Self-Organizing Maps (SOM) [78]. Both GTM and SOM use pre-

defined grids and create discrete projections. Neural Gas Algorithm applies a neural

network structure and is inspired by SOM. This method aims at finding the optimal

data representation (an optimal manifold) [118]. LE creates continuous projections of

graphs; however, the performances of the projection are generally poor [86]. The goal

of this thesis is to explore the field of dimensionality, finding possible improvements

for the existing dimensionality reduction technics and applying the dimensionality re-

duction technics in real world problems, especially for visualization and missing data

imputation. The next section summarizes the different parts of thesis.

Another point of interest is the regularization problem and the speed up for

machine learning algorithms, especially for Artificial Neural Networks (ANNs) [99].

Tow common question related are: 1) how to process large amount of data with

reasonable computational time? 2) how to select the structure the complexity and

the parameters of ANNs?
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Although the significant improvement of the required computational power has

been made for many complex algorithms, enabling the solution of large problems, such

as SVM, and Deep Learning, the volume of data is growing even faster [6]. Therefore,

reducing the computational time for machine learning algorithms is evermore desir-

able. Extreme Learning Machines (ELMs) [4,42,61,82,104] is a type of Randomized

Neural Networks (RNNs) that is known for its fast training speed and good accuracy.

Despite its merits, the performance of ELM is sensitive to the number of neurons.

Underfitting can happen when there are not enough neurons, which leads to a poor

approximation; while too many neurons often leads to overfitting problems, resulting

in poor generalization performance. It is not easy to find the "correct" number of

neurons that keeps the balance between a better network performance and simple

network topology. Regularization is introduced to deal with this particular dilemma.

Many algorithms have been applied to regularize the complexity of ELM, such as L1

regularization like LASSO [125, 138] or L2 regularization as known as Ridge Regres-

sion or Tikonov regression [105, 115]. Although, these regularization algorithms can

significantly reduce the complexity of ELMs, they can’t give a direct answer to the

"correct" number of neurons, and the performance of ELMs is still largely influenced

by the number of neurons it has. Lanczos Algorithm [80,81] originally was introduced

to approximate the extreme eigenvalues of symmetric matrices. It is a fast iterative

process that is proven to converge quickly [111]. Due to the distinct training process

of ELMs, the last step of training ELMs is an Ordinary Least Square problem, which

can be solved by the Lanczos Algorithm. Chapter 5 presents a modified Lanczos
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Algorithm for ELMs that can speed up the training process, but more importantly

does regularization of ELMs and allows ELMs to have a very large number of neu-

rons, while not encountering overfitting problems. In other words, Lanczos ELM can

reduce the computational time for the model selection, and just use a large number

of neurons to generate the robust outcome without overfitting.

1.2 Overview

Chapter 2 contains an application of data analysis by feature selection and

visualization, and shows that such combination is powerful for analyzing the high-

dimensional data, providing the interpretability for complicated problems.

In Chapter 3, we created a machine learning supported hierarchical multiscale

method to bridge the molecular dynamics to continua.

Chapter 4 is about a novel dimensionality reduction technique, which preserves

the intrinsic quality of Self-Organizing Maps (SOM): it is nonlinear and suitable for

big data. It also brings continuity to the projection using two Extreme Learning

Machine (ELMs) models.

Chapter 5 presents a regularized ELM to give the answers to the speed up of

ELM and the model selection problem of ELM. A new iterative method for solving

ELM is proposed, which on average is 20% faster than the regular ELM and has 14%

lower MSE than the regular ELM.

In Chapter 6, we give a possible directions for further research. In particular,

we want to extend the work from Chapter 4 and apply it to missing data imputation.
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CHAPTER 2
ELM FEATURE SELECTION AND SOM DATA VISUALIZATION

FOR NURSING SURVEY DATASETS

2.1 Introduction for Chapter 2

Medical errors ranked as the eight highest cause of death in the United States

[67]. It is estimated that about 44,000 to 98,000 people die annually from medical

errors in USA [67]. These numbers are higher than deaths from breast cancer, AIDS,

and car accidents combined. Medication errors are the most frequently occurring

medical error in healthcare settings [71]. Unfortunately, serious life threatening errors

are usually reported, but the majority of other medication errors are not [12].

Medication delivery is a complex multi-stage process that involves several

healthcare professionals [19]. Medication errors occur at each step of the medica-

tion process [128], with 38% of errors occurring at the administration phase [124].

Nurses spend about 40% of their time administering medications, and by virtue of

their role represent the last defense wall that could intercept errors before reaching

patients [120]. Most health care organizations rely on nurses to report errors whether

they are the cause, witness or collaborator [98].

Medication error reporting is a voluntary process [46]. Reviewing and ana-

lyzing medication error reports provide healthcare administrators and safety officers

with opportunities for understanding error root causes and subsequently design in-

terventions to prevent subsequent errors [16, 68, 88]. However, having less than 5%

of errors reported, makes developing a proper intervention a tough challenge [24].
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Fear of blame, punishment, humiliation, retaliation from managers and/or peers were

some of the reasons deterring nurses from reporting errors [27, 98]. Mayo and Dun-

can (2004) [98] argued that all efforts of healthcare administrators, policy makers and

scholars to create effective medication errors reporting systems, could fail if nurses re-

main unwilling to report errors. Therefore, the purpose of this multisite data analysis

is to examine interpersonal and organizational factors predicting nurses’ willingness

to report medication errors.

In this Chapter, we propose a novel combination of Extreme Learning Ma-

chines [20,59,60,62] and Self-Organizing Maps [29,78,89,103] to identify which vari-

ables lead to the likelihood to report the medical errors. Extreme Learning Machines

are accurate by extremely fast prediction models [60], therefore, it is possible with

them to test a very large number of possible variables. Self-Organizing Maps are

performing nonlinear dimensionality reduction [78] to get an accurate visualization of

the data. Combining both techniques reduces the curse of dimensionality [143] and

improves furthermore the interpretability of the visualization.

The Chapter is organized as follows: in Section 2.2, we give details about

the targeted problem. Section 2.3 is presenting the methodology: data collection,

overview of the methodology and details about each methodology components (ELMs

and SOMs). Section 2.4 is presenting our experiments, including data preparation,

experimental setup, results, visualization results and analysis. Finally, future works

are introduced in the Conclusion.
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2.2 Problem Description

The surveys that we are analyzing include several types of variables: Interper-

sonal variables measurements, Organizational variables measurements and Outcome

variable measurement. There are described in detail below.

Interpersonal variables measurements:

1) Warmth and belonging climate was measured using the Modified Litwin and

Stringer Organizational Climate Questionnaire (M-LSOCQ) [33]. The M-LSOCQ

consists of 25 items addressing two main dimensions of unit climate (warmth and

belonging; and structure and administrative support). In this study, 11 items mea-

suring the dimension of warmth and belonging were used. Responses use a 4- point

Likert scale ranging from 0 (strongly disagree) to 3 (strongly agree). High scores

indicate a climate that is characterized by sense of unity and cohesion among team

members. This measure included questions such as: "I feel that I am a member of well-

functioning team", "People are proud of belonging to this unit", and "A friendly atmo-

sphere prevails among the people in this unit". Some questions were worded positively

and some negatively. The validity of the instrument has been established through ex-

ploratory factor analysis in a prior study [33]. Cronbach’s Alpha for warmth and

belonging is reported as 0.91 [33].

2) Organizational trust was measured using Cook and Wall (1980) [73] orga-

nizational trust instrument. The organizational trust measure consists of 12 items

covering 4 dimensions each dimension consisted of three items. The four dimensions

are faith in peers, faith in managers, confidence in peers and, confidence in managers.
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Responses use a 4-point Likert scale ranging from (0) definitely disagree to (3) defi-

nitely agree. Validity of the instrument was established through factor analysis that

supported the four dimensions [73]. This measure included questions such as: "I have

a full confident on the skills/of my peers/colleagues", "I feel quite confident that my

unit manager will always try to treat me fairly", and " my nurse manager is sincere in

his/her attempts to meet our point of views". Some questions were positively worded

and some negatively worded. Internal consistency has Cronbach’s alpha level ranging

from 0.77-0.79 for the four dimensions, and 0.87 for the total scale.

Organizational variables measurements:

1) Nurse manager’s leadership style was measured using the Multifactorial

Leadership Questionnaire (MLQ-5X rater form) (Bass & Avolio, 2004). The section

of the instrument which addresses employee’s (nurse’s) perceptions to nurse manager’s

leadership styles (transformational and transactional) will be used. This section of

the MLQ-5X consists of 28 items covering the two styles. Transformational leader-

ship style was measured by five subscales of: idealized attributes, idealized behaviors,

inspirational motivation, intellectual stimulation, and individualized consideration;

each subscale consists of 4 items. Transactional leadership style was measured with

two subscales of: contingent reward and management-by-exception (Active); each

subscale consists of 4 items. Responses are measured using a 5-point Likert scale

ranging from 0 (not at all) to 4 (frequently if not always). Higher scores indicate the

nurse manager’s tendency toward using a particular leadership style. This measure in-

cluded questions such as: "my manager Considers the moral and ethical consequences
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of decisions"," my manager displays a sense of power and confidence", and " my man-

ager acts in ways that builds my respect". All the items are positively worded. [33]

reported internal consistency of this instrument as: 0.95 for transformational, 0.73 for

transactional. The construct validity of the instrument has been established through

exploratory and confirmatory factor analysis.

2) Safety climate was measured using subscales from Nieva & Sorra (2003) [110]

safety climate survey, it is one of the most widely used instruments to measure safety

climate. It consists of 12 subscales addressing hospital and unit-based safety climate

dimensions. For the proposed study 20 items covering 6 safety climate dimensions

of (Manager’s actions promoting safety (4 items), organizational learning (3 items),

team work within unit (4 items) , communication openness (3 items), feedback and

communication about errors (3 items), and non-punitive response to error (3 items))

will be used. Responses use a 5-point Likert scale ranging from 0 (strongly disagree)

to 4 (strongly agree). This measure included questions such as: "After we make

changes to improve patient safety, we evaluate their effectiveness ", "In this unit,

we discuss ways to prevent errors from happening again", and "My unit manager

seriously considers staff suggestions for improving patient safety". Some items are

positively worded and some were worded negatively. Higher scores indicate better

safety climate. The internal consistency reliability for these dimensions range from

0.63 to 0.83 [110].
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Outcome variable measurement:

Nurse willingness to report Medication error was measured using three items

from the outcome subscale from Nieva & Sorra (2003) safety climate instrument [110].

The original question stem asks nurses to report the frequency of reporting errors at

their units. In this study the wording for the question stem was modified to reflect

nurse’s willingness to report his/her own medication errors if happened. Responses

use a 4-point Likert scale ranging from 0 (not likely) to 3 (very likely). Higher scores

indicate more willingness to report medication errors. Three items were: "When a

mistake is made, but caught and corrected before affecting the patient, how likely

are you to report this error", "When a mistake is made, but has no potential harm

to the patient, how likely are you to report this error", and "When a mistake is

made that could harm the patient, but does not, how likely are you to report this

error". Medication error severity gradually increased from the first to the third one.

Reliability coefficient for the original question is .84 [110]. The instrument with the

rewarded question stem was used in a previous PI research (unpublished data) and

showed reliability coefficient of .88 (Attachment- instrument 5).

Completing all the study instruments takes approximately 20 minutes for a

subject.
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2.3 Methodology

2.3.1 Procedure for Data Collection

This analysis was conducted using data that were collected from three funded

projects. Data for the three projects were collected simultaneously after obtaining

the required human subject approval. Project 1 is the MNRS and project 2 is the

HCGNE. In project 1 and 2, the principle investigator (PI) selected a random sample

of 850 Registered Nurses (RN) working in general medical surgical units and nursing

homes using one midwestern state nursing registry. The study package containing: the

study cover letter, the study survey, and a pre-stamped return envelope addressed to

the PI was mailed to the participants’ home address. A convenience sample of 75 RN

working in five Emergency Departments (ED) affiliated with one midwestern medical

center were recruited for the third project, which is CGEAN. The PI attended the

monthly staff meeting for the conveniently selected five ED and introduced the study

to nursing staff. The PI placed the study packages, contacting the same materials as

the first two projects, in the nurses’ mailboxes. In order to increase the response rate

follow up reminders over a three week period was mailed to each participant (project

1and 2), and was placed in nurses’ mail boxes in the third project. For all three

project a $10 compensation check was mailed to each participant after receiving the

completed survey. The PI has achieved a 44% and 47 %response rate when using a

similar procedure in previous studies of hospital nurses.
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2.3.2 Methodology Overview

We propose a novel combination of Extreme Learning Machines [20, 59, 60,

62] and Self-Organizing Maps [29, 78, 89, 103] to identify which variables lead to the

likelihood to report the medical errors. Extreme Learning Machines are accurate by

extremely fast prediction models [60], therefore, it is possible with them to test a very

large number of possible variables. Self-Organizing Maps are performing nonlinear

dimensionality reduction [78] to get an accurate visualization of the data. Combining

both techniques reduces the curse of dimensionality [143] and improve furthermore

the interpretability of the visualization.

Interpretability is one of the essential goal of data analysis. However, it is

difficult for human to understand the data in high dimension, especially for data

that have a nonlinear relationship [45]. Visualization is a great approach to bring

the interpretability for data in such a way that, humans can visually examine the

relationship of data [75]. Since visualization can bring comprehensive insight for

the problems, it should be carried out whenever possible. Although, visualization is

recommended, it is not easy to obtain a "good" visualization, when the number of

features of data is large.

In this Chapter, a Two-Phase Visualization technique is proposed, using Ex-

treme Learning Machine to perform feature selection first, Self-Organization Map to

perform visualization secondly. This technique is a non-linear approach for both fea-

ture selection and visualization, and will reveal the nonlinear relationship between

the features and the target(s).
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Figure 2.1: Phase I: ELM-WSF

Many ELMs are built in the fist phase to evaluate the relationship between the

different subset of features and the target variables. R2 value is used as the criteria

to measure such evaluation. Feature sets with large R2 values are selected and used

for the visualization in the second phase.

2.3.3 Details

2.3.3.1 Feature Selection

In the process of data analysis, Feature Selection (FS) is of great importance.

It allows the regression or classification models to be robust, by filtering out the

redundant or irrelevant data, which generally exists in the training data. This is

also thought as the noise reduction process. It is achieved by selecting a subset of
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Figure 2.2: Phase II: SOM Visualization

“relevant” features, and build the models upon those “relevant” features only. As a

result, the model becomes easier to learn (the computational load is reduced), the

generalization performances are improved and the model can be easily interpreted.

The FS process can be described as follow: for a dataset X, whose feature set

is denoted as F , that has p features, we find a subset of features S, that contains p′

features, where S ∈ F and p′ < p. In theory, the feature set S should be selected in

such a way that the model built with these features gives the minimum generalization

error [45].

Besides the benefit of improving the generalization performances, FS also assist

for a better data visualization [75], simplifying the models and making them easier

to interpret by users or practitioners [77].

FS algorithms can be broken up into three categories: the filter algorithms, the

wrapper algorithms, and the embedded algorithms [45]. The filter methods utilize the
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characteristics of the training data and selects a subset of features without involving

the final model [116]. In contrast, the wrapper method involves the learning model

and targets on improving the generalization performance of the final model [101].

Although the wrapper method is more computationally expensive than the filter

method, the generalization performance of the former approach is better than the

later approach [148]. The embedded method is the hybrid of the filter and wrapper

methods [31]. In our methodology, we use the wrapper approach with ELM as the

training model. The detail is in the Section 2.3.3.
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ELM Wrapper Feature Selection Paradigm

Figure 2.3: ELM Wrapper Feature Selection
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ELM wrapper Feature Selection (ELM-WFS) is the proposed method for fea-

ture selection in the first phase. The main frame of this method is the wrapping

approach feature selection. The learning model is ELM. The searching algorithm is

exhaustive search and greedy hill climbing. The evaluating function is the R2 value

of the model [38]. The optimality criteria is using the predefined number of the

iterations.

ELM-WFS initialized by selecting a subset of features S0, from a given dataset

X with p features. Then, ELM is build upon (S0,Y), where Y is the corresponding

target variable. The performance of this model is evaluated by R2. A new random

search is then started in the feature space, generating a new subset of features: S1.

The new model is build upon (S1,Y) and its performances are evaluated. If the

performance of the new model with the new feature set S1 is found better than the

old model with the feature set S0, S1 is selected over S0. The search continues and

better feature sets are selected, until a predefined stopping criteria is reached.

ELM is a very fast machine learning model, which can speed up the training

process. In order to achieve both a better R2 and the model interpretability, exhaus-

tive search is applied to find a model with as high accuracy as possible, meanwhile, as

simple as possible. The R2 measures the regression accuracy, and allows a comparison

with other feature selection method.

step 1. Initialization. From the feature space, a subset of k features: Sk is

selected randomly, with the k = 1 at the beginning.

step 2. Building ELM. An ELM is built upon the selected model, with prede-
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fined number of hidden neurons. The input is the data with the selected features: Sk;

the output is the regression value of the data. In our case, the input is the selected

set of questions from the survey data, and the output is regression value of one of the

error report question.

step 3. Computing the R2. With the regression value from the ELM model,

we could evaluate the model by compute the R2 value between the prediction and

the true value.

step 4. Updating the S∗k. If the R2 from step 3 is larger than the R2 from the

previous model, the current Sk becomes the best set of features: S∗k; otherwise, Sk

stays the same.

step 5. Random Feature Selection. Randomly select new k features: Sk from

the feature space.

step 6. Optimality Criteria Checking. If the maximum iteration number is

reached, then S∗k becomes S∗∗k , which denotes the final best k-variables. k is increased

by one and the method start from step 1 again. If the iteration is not at the maximum,

repeat from step 2. to step 6 again.

2.3.3.2 Extreme Learning Machine

Extreme Learning Machine (ELM) in [20,106] as important emergent machine

learning techniques, are proposed for training Single-hidden Layer Feed-forward Neu-

ral Networks (SLFNs) [54,57–60].

In contrast with the traditional Feedforward Neural Networks (FNNs), which
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generally are trained by the well-known backpropagation (BP) algorithms, in ELM,

the wight for the hidden layer are randomly initiated and then fixed without iteratively

tuning. Then commonly used activation functions are applied on the hidden neurons.

The only parameters learned in ELM are the weights between hidden layer and the

output layer. In this way, the parameters of the hidden neurons can be independent

of the training data, which makes it possible for ELM to attain the near optimal

generalization bound of traditional FNN. Theoretical studies as in [54, 57, 59] has

shown that ELM has the universal approximation and classification properties.

The unique training process of ELM provides a huge leverage for the learning

speed. A non-iterative solution of ELM provides a speedup of 5 orders of magnitude

compared to Multilayer Perceptron ( [122], MLP) or 6 orders of magnitude compared

to Support Vector Machines ( [25], SVM).

The Extreme Learning Machine [4,42,61,104,130] is introduced as a generalized

Single-Layer Feed-forward Network (SLFN) [57–60]. This type of Network is capable

of solving classification, regression and clustering problems. According to Huang et

al. in [61], ELM has good generalized performance in most cases and the learning

speed is thousands of times faster than conventional neural networks [42,52].

ELM belongs to the family of Randomized Neural Networks (RNNs). Unlike

traditional neural networks and learning algorithms, the ELM algorithm shows that

hidden nodes can be randomly generated. Thus, the weights from the first layer can

be independent from the training data. Because there is no dependence between

the input and output weights, ELM has a non-iterative linear ordinary least square
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solution for the output weights, unlike the conventional Back-propagation training

procedure [50]. On top of the distinct properties of ELM, Huang et al in [57, 59]

stated that ELM has the universal approximation capability, indicating that ELM

can universally approximate any continuous target functions in any compact subset

X of the Euclidean space Rn [162].

The rest part of this Section gives a brief explanation of the original ELM. In

order to keep a uniform meaning for notations throughout the Chapter, some of the

original notations for ELM have been modified.

Figure 2.4 shows a typical structure of ELM, which contains three layers: the

input layer, the hidden layer, and the output layer. Input layer weights (w) and

biases (b) are randomly generated and don’t involve in the further training anymore.

X ∈ Rm×d,X = (x1, . . . , xm)T is the input data, with sample size m, and feature

size d. Through the first layer, θ is mapped to N -dimensional ELM random feature

space. After the nonlinear transformation f , the hidden layer output is:

hi(x) = f(xTwi + bi), i ∈ [1, N ]. (2.1)

f is also called the activation function. Many nonlinear function can be applied

here, such as a sigmoid function. Other activation functions are listed in [57,59]. The

last layer is the ELM functional output:

fELM(x) =
N∑
i=1

θihi(x) = h(x)Tθ = t̂, (2.2)
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Figure 2.4: ELM Structure
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Where, h(x) = (h1(x), . . . , hN(x))T , θ is the output weights θ = (θ1, . . . , θN)T

and t̂ is the approximation of t — the true target value (i.e. labels, or regression

values) of x.

The last step for training an ELM is to determine the output layer coefficients:

θ. If T = (t1, . . . , tm)T is the corresponding target matrix of the input matrix X,

θ should satisfy the following equation:

θ = arg min
θ
‖fELM(X)− T ‖2 , (2.3)

in which, ELM function: fELM(X) = T̂ is an approximation of the true target matrix

T .

To simplify the problem, introduce H ∈ Rm×N :

H =



h1(x1) . . . hN(x1)

. . .
. . . . . .

h1(xm) . . . hN(xm)


, (2.4)

and the minimization problem in equation 2.3 can be rewritten as:

θ = arg min
θ
‖Hθ − T ‖2 . (2.5)

Solving the above problem finishes the ELM training process. Typically, solv-

ing this problem is the most computational intense step in the ELM Algorithm.

Practically, the implementations of the pseudoinverse include a small regular-

ization term H† = (HTH + αI)HT .
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2.3.3.3 Self-Organizing Maps for Visualization

SOM is a popular nonlinear dimensionality reduction tool that uses a prede-

fined 2-D grid to capture the topology of the data in the high dimension [3] (see

Figure 2.5).

Besides the two-dimensional map representation, each point on the grid will

attain a weight, or prototype, which is basically its d-dimensional representation in

the original d-dimensional data space.

Figure 2.5: An illustration of the training of a self-organizing map. The blue blob is

the distribution of the training data, and the small white disc is the current training

datum drawn from that distribution. At first (left) the SOM nodes are arbitrarily

positioned in the data space. The node (highlighted in yellow) which is nearest to

the training datum is selected. It is moved towards the training datum, as (to a

lesser extent) are its neighbors on the grid. After many iterations, the grid tends to

approximate the data distribution (right). [147].
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The grid, which consists of a rectangle including the points located on a rectan-

gular lattice, is accompanied with randomly initialized weights for each point. Finally,

after a considerable number of iterations, these weights will be updated to the points’

positions in the original d-dimensional data space. In the iterative algorithm, units

(or prototypes) cs, for s = [1, . . . , N ], in which N is the number of points on a 2-D

grid, are updated with the following rule:

cs ← cs + ασλ(r, s)(xi − cs) (2.6)

where xi is the ith data point, α is a learning rate between 0 and 1, and σλ

which is called the neighborhood function returns zeros for non-neighbors, and ones

for other non-zero values for valid neighbors. In addition, d is a distance function and

r = argmin
s
{d(xi, cs)}.

After the projection, according to SOM algorithm, each point cs, s = [1, . . . , N ]

on the 2-D grid is a representative of a group of points in d-dimensional data space.

Basically, cs is the Best Matching Unit (BMU) of a group of points in original data

space.

Therefore, Self-Organizing Maps are performing a discrete nonlinear dimen-

sionality reductions.

In order to understand the visualization, colors are used to transform the SOM

into a heat map that helps understanding the importance of a given variable. Using

several heat maps help analyzing the data as illustrated in the next Section.
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2.4 Experiments

In this section, the proposed Two-Phases Visualization is tested using the

nursing dataset. The original survey for this dataset are listed in the appendices. In

total, 144 questions are asked in the survey. This includes all the unique questions

from the three different surveys. 380 subjects have participated in these surveys. 165

of them took the HCGNE survey; 75 took the CGEAN survey; 144 took the MNRS

survey. Although the design and the format of theses surveys are slightly different,

most questions are the same (Uncommon questions are omitted in the experiment,

only common ones are used).

2.4.1 Data Preparation

Each survey data is collected in a separate “.csv” file. The features in the

dataset are corresponding to the questions from the survey, and the values of the

features are the subjects’ answers to the questions. The name of the features (for

main questions) are coded in two parts: “the abbreviation of the survey section

name” + “the question number”. For example: Feature “LSHPQ1” means “question

1” in the section of “Nurse manager’s leadership style”, representing the question:

“My unite manager provides me with assistance in exchange for my efforts”. Table

2.1 shows the correspondences among the Feature Names, the Measurements, and

the survey sections. Other Feature Names are the abbreviations of miscellaneous

survey questions, also showing in the Table 2.1. The last three Feature Names are

the outcomes variables, which are also the target variables in our experiments. The
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detailed survey questions can be found in the appendices.

Table 2.1: Feature Names Reference Table

Feature Names Measurements Survey Sections

LSHP Nurse manager’s leadership style Unit nurse manager

WARMCLIM Warmth and belonging climate Unit work environment

SAFCLIM Safety climate Additional aspects of work environment

WARMCLIM Warmth and belonging climate Unit work environment

ORGTRUST Organizational trust Interpersonal relationships

NGEDU Nursing education degree

YSOFRNEXP Total Years of Experience

EXPCURRUNIT Years worked in the current unit

EXPCURRMNG Years worked with the current manager

WORKHRS How many hours work per week

SHIFTWRK Work shift

EMPSTATUS Employee status

HOSPSIZE Hospital size

REPSYSTFAMIL Hospital reporting system

COMPLERREP Hospital reporting system

REPSYSTYP Hospital reporting system

EXPCURRUNIT Hospital reporting system

ERREPQ1 Outcome variable Will you report this error

ERREPQ2 Outcome variable Will you report this error

ERREPQ3 Outcome variable Will you report this error
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All category variables are converted to numerical values using label encoder.

In the experiment, all Safety Climate features are omitted, because the HCGNE

survey has a different design than the other two surveys on this part. Combining the

two designs will create too many missing values in the dataset.

All the rows with missing values has also been removed.

After clean-up the above data, the rest of 68 features and 328 samples are used

in the experiment.

In the experiment, the notation Yi ∈ R328×1 denotes the target variable

ERREPQi, where i = 1, 2, 3. X ∈ R328×68 denotes the total feature set.

2.4.2 Experimental Setup

The three outcome questions are:

ERREPQ1: When a mistake is made, but caught and corrected before

affecting the patient, how likely are you to report this error?

ERREPQ2: When a mistake is made, but has no potential harm to the

patient, how likely are you to report this error?

ERREPQ3: When a mistake is made that could harm the patient, but does

not, how likely are you to report this error?

Due to the distinct nature of these three questions, one subject can give very

different answers to these questions. It is intuitive to analyze three questions sep-

arately. Thus, the Two-Phases Visualization has been applied on (X,Y1), (X,Y2),

and (X,Y3) separately.
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For each output variable Yi, ELM Wrapper Feature Selection is applied first.

20 subset features S∗∗k ∈ Rk, where k = 1, 2, ...20 are selected. For each k, R2
(S∗∗

k
,Yi) >

R2
(Sk,Yi), for any subset of k features Sk, where R2

(Sk,Yi) is evaluated as:

R2
(Sk,Yi) = 1− MSE(Sk,Yi)

V ar(Yi)
, (2.7)

MSE(Sk,Yi) = 1
N

(Yi − Ŷi)(Yi − Ŷi)T , (2.8)

Ŷi = ELM(Sk,Yi). (2.9)

One optimal feature set for visualization is then chosen from the 20 candidate,

with k∗ number of features. The selection criteria for the optimal feature set is based

on the R2 values of the k candidates: on the one hand the R2 value should be as large

as possible, on the other hand the number of features, k should be as less as possible.

In general, we choose the last k, that gives the biggest raise in R2.

SOM Visualization is applied next on the selected best K∗ features.

2.4.3 Results

2.4.3.1 ERREPQ1

ERREPQ1: When a mistake is made, but caught and corrected before affecting

the patient, how likely are you to report this error?
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Feature Selection Results

The best feature sets S∗∗k , where k = 1, 2, ...20, for Y1 are selected by ELM-

WFS. The following table lists selected feature names for k = 1 to k = 5.

Table 2.2: Selected Features for ERREPQ1

Feature Names

S∗∗1 EXPCURRU

NIT

S∗∗2 YSOFRNEX

P

WORKHRS

S∗∗3 EXPCURRU

NIT

SHIFTWRK LSHPQ20

S∗∗4 EXPCURRU

NIT

WARMCLI

MQ7N

ORGTRUST

Q5

ORGTRUST

Q10

S∗∗5 EXPCURRU

NIT

SHIFTWRK LSHPQ20 ORGTRUST

Q12N

FAMILIARE

XTENTQ4

The R2 values for the best features are showing in Figure 2.6.
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Figure 2.6: R Squared Values for ERREPQ1

Since S∗∗4 gives the highest R2 for ERREPQ1, the Optimal feature set for

visualization is S∗∗4 , which are:

• EXPCURRUNIT: Years of experience in the current unit.

• ORGTRUSTQ5: I can rely on my peers/colleagues to lend me hand (help me)

if I needed it.

• ORGTRUSTQ10: Most of my peers/colleagues efficiently do their work even if

the unit manager is not around.

• WARMCLIMQ7N: People in this unit really do not trust each other.
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Visualization Results

SOM is built upon the optimal feature set and the outcome variable 1: (S∗∗4 ,Y1).

Figure 2.7: When a mistake is made, but caught and corrected before affecting the

patient, how likely are you to report this error? 0: Not Likely at All; 1: Somewhat

Not Likely; 2: Somewhat Likely; 3: Very Likely.
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Figure 2.8: How long you have been working in your current unit?
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Figure 2.9: I can rely on my peers/colleagues to lend me hand (help me) if I needed

it. 0: Definitely Disagree; 1: Inclined to Disagree; 2: Inclined to Agree; 3: Definitely

Agree.
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Figure 2.10: Most of my peers/colleagues efficiently do their work even if the unit

manager is not around. 0: Definitely Disagree; 1: Inclined to Disagree; 2: Inclined to

Agree; 3: Definitely Agree.
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Figure 2.11: People in this unit really do not trust each other. 0: Definitely Disagree;

1: Inclined to Disagree; 2: Inclined to Agree; 3: Definitely Agree.

Colored Map Interpretation In the visualizations, the bright orange color is

associated with the higher value of the feature, while the dark blue color means a

lower value of the feature. The precised color-value relationship is represented on the

reference bar on the right.

The numbers on every cell consist of two elements: the upper number is the

cell number; the bottom number is the feature value of the cell (the codebook value

of SOM).

The map is organized in such a way: each cell is a small cluster for several

subjects, that are overall very similar in the aspects of the selected features. The

subjects that are in the nearby cells are more similar than the subjects from cells that
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are not adjacent.

The colored map is showing the individual feature values (including the target

values) one feature at a time. Although different feature has a different colored map,

the cluster of the subjects are fixed for every map.

The add-on boarders mark the regions of interests on the map. Further analysis

is given on each of the region in the latter part of the Chapter.

Same interpretation for the colored maps is applied for all the colored maps.

Region one: cells 1, 2, 3, 7, 8, 9, and 13. Subjects in these cells have high

values (above 2.3) for the output variable 1, ERREPQ1, which indicates that they

are more willing to report when a mistake is made, but caught and corrected before

affecting the patient. The outstanding characteristic for them is that they have been

worked on average a very long time in the current unit: between 14 years and 26 years

(indicating by the EXPCURRUNIT map). However, in general these subjects do

not give very high score for the peer trust questions (indicating by the rest of the

maps).

Conclusion: subjects have worked in the current unit for over 14 years are

likely to report the ERREPQ1 error.

Region two: cells 5, 6, and 11. Subjects in these cells also give above average

scores for the variable ERREPQ1. It can be noticed easily that they all worked in

the current unit for 4 to 6 years, which is relatively short comparing to subjects in

other cells. Moreover, they tend to trust their peers very much, giving very high
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score (around 3) to ORGTRUSTQ5 and ORGTRUSTQ10, and very low score to

WARMCLIMQ7N , which is a reverse question (the lower the score, the higher they

feel trust).

Conclusion: subjects have worked in the current unit for under 6 years, but

have very high trust levels for their peers are likely to report ERREPQ1 error.

Region three: cells 20, 25, 26, 31, 32 and 37. Subjects in theses cells are

more willing to report as well. They are also relatively “young” to the current unit,

between 4 to 5 years. However, their trust to the peers are not too strong, on the

margin of the low trust level: around 2 for both ORGTRUST questions and between

1 for to 2 for the WARMCLIM question.

Conclusion: subjects have worked in the current unit for around 5 years, but

somehow feel the lack of the peer trust, are likely to report ERREPQ1 error.

Region four: cells 42 47 and 48. Subjects in these cells are very unwilling to

report the error (average score is around or bellow 0.3). They worked in the current

unit for 8 to 10 years. They feel somewhat trust among peers but far from strong

trust.

Conclusion: subjects who have very high trust and who have very low trust are

both likely to report the error. However, subjects who have medium or medium low

level of peer trust are uncertain whether they will report the error or not. How long

have they been working in the unit also has some effect on the subjects for reporting

the error.
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2.4.3.2 ERREPQ2

ERREPQ2: When a mistake is made, but has no potential harm to the patient,

how likely are you to report this error?

Feature Selection Results

The best feature sets S∗∗k , where k = 1, 2, ...20, for Y2 are selected by ELM-

WFS. The following table lists selected feature names for k = 1 to k = 5.

Table 2.3: Selected Features for ERREPQ2

Feature Names

S∗∗1 LSHPQ5

S∗∗2 Age WARMCLI

MQ8N

S∗∗3 SHIFTWRK LSHPQ5 LSHPQ9

S∗∗4 Age WARMCLI

MQ8N

ORGTRUST

Q5

ORGTRUST

Q8

S∗∗5 LSHPQ1 LSHPQ10 LSHPQ11 LSHPQ17 ORGTRUST

Q5

The R2 values for the best features are showing in Figure 2.12.
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Figure 2.12: R Squared Values for ERREPQ2

Since the R2 value for ERREPQ2 does not increase a lot after S∗∗3 , S∗∗3 is the

Optimal feature set for visualization. The features are:

• SHIFTWRK: Typical working shift.

• LSHPQ5: Seeks differing perspectives when solving problems.

• LSHPQ9: Talks enthusiastically about what needs to be accomplished.

Visualization Results

SOM is built upon the optimal feature set and the outcome variable 2: (S∗∗3 ,Y2).
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Figure 2.13: When a mistake is made, but has no potential harm to the patient, how

likely are you to report this error? 0: Not Likely at All; 1: Somewhat Not Likely; 2:

Somewhat Likely; 3: Very Likely.
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Figure 2.14: Seeks differing perspectives when solving problems. 0: Not at all; 1:

Once in a while; 2: Sometimes; 3: Fairly often; 4: Frequently if not always.
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Figure 2.15: Talks enthusiastically about what needs to be accomplished. 0: Not at

all; 1: Once in a while; 2: Sometimes; 3: Fairly often; 4: Frequently if not always.
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Figure 2.16: Please indicate your typical shift (the shift that your work most of

your time). 0=7am-3pm; 1=3pm-11pm; 2=11pm-7am; 3=7am-7pm; 4=7pm-7am;

5=8am-5pm; 6=other; 7= no specific shift/rotating.

Region one: cells 32, 37-40, and 43-48. Subjects in these cells are somewhat

likely or very likely to report the error. The outstanding character for these subjects

is that they all give very high score for the two unit manager leadership measurement

questions.

Conclusion: subjects who believe their unit manager is creative when solving

the problems and has enthusiasm about the goal are likely to report the error.

Region two: cells 6, 12, 18, 24, and 30. Subjects in these cells are not likely

at all or somewhat unlikely to report the error. However the reason why they are
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not motivated to report is not obvious. For subjects in the cell 6 and 12, the low

recognition level of the unit manager’s leadership may cause the unwillingness to

report. For the rest subjects the long work-shift (many of the subjects in these cell

are working at a 12 hour work-shift) may be the reason of lack of motivation to report.

Conclusion: subjects who work at a long shift and think their manager are not

seeking differing perspective when solving the problems or lack of enthusiasm when

speaking of the goals are unlikely to report the error.

2.4.3.3 ERREPQ3

ERREPQ3: When a mistake is made that could harm the patient, but does

not, how likely are you to report this error?

Feature Selection Results

The best feature sets S∗∗k , where k = 1, 2, ...20, for Y2 are selected by ELM-

WFS. The following table lists selected feature names for k = 1 to k = 5.
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Table 2.4: Selected Features for ERREPQ3

Feature Names

S∗∗1 LSHPQ18

S∗∗2 Age WORKHRS

S∗∗3 EXPCURRU

NIT

LSHPQ6 ORGTRUST

Q6

S∗∗4 Age LSHPQ15 LSHPQ17 LSHPQ20

S∗∗5 LSHPQ10 LSHPQ18 ORGTRUST

Q6

COMPLERR

EPQ2

ERREPTIM

EQ5

The R2 values for the best features are showing in Figure 2.17.



www.manaraa.com

47

Figure 2.17: R Squared Values for ERREPQ3

Since the R2 value for ERREPQ3 does not increase a lot after S∗∗3 , S∗∗3 is the

Optimal feature set for visualization. The features are:

• EXPCURRUNIT: Years of experience in the current unit.

• LSHPQ6: Talks optimistically about the future.

• ORGTRUSTQ6: My unit manager seems to do an efficient job.

Visualization Results

SOM is built upon the optimal feature set and the outcome variable 2: (S∗∗3 ,Y2).
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Figure 2.18: When a mistake is made, that could harm the patient, but does not, how

likely are you to report this error? 0: Not Likely at All; 1: Somewhat Not Likely; 2:

Somewhat Likely; 3: Very Likely.
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Figure 2.19: How long you have been working in your current unit?

Figure 2.20: Talks optimistically about the future. 0: Not at all; 1: Once in a while;

2: Sometimes; 3: Fairly often; 4: Frequently if not always.
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Figure 2.21: My unit manager seems to do an efficient job. 0: Definitely Disagree; 1:

Inclined to Disagree; 2: Inclined to Agree; 3: Definitely Agree.

Region one: cells 31, 32, 37, 38, 43 and 44. Subjects in these cells are some-

what likely to report the error. For the out come variable ERREPQ3 the majority

people are choosing “very likely to report”. However, for this region, subjects are

hesitating. The subjects belive their manager are very optimistic about the future

according to the LSHPQ6 map, but they don’t think their manager can do his/her

job efficiently.

Conclusion: Subjects who have some doubts about their manager’s efficiency

and think the manager is optimistic about the future are somewhat likely to report

the error.
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2.5 Conclusions for Chapter 2

Results of this data analysis using SOM showed that nurses willingness to re-

port medication error is contingent on three factors of experience in the unit, nursing

experience, organizational trust particularly trust in peers, and nurse manager lead-

ership behaviors. Furthermore, the results showed that outcome predictors varied

based on level of error severity. Based on this result, hospital administrators should

consider focusing on the previously outlined predictors if they want to improve nurses’

willingness to report medication errors regardless its level of severity. Using SOM, ac-

counted for the non-liner relationship that exist among the different study variables.

Most importantly it showed the pattern of organizational trust development. This

information was not evident when we used traditional liner modeling.

The new methodology that is combining ELMs and SOMs has provided an

clear understanding of the studied dataset. Some of the analysis are obviously right

and similar to the conclusions that can be obtained with traditional data analysis.

Nevertheless, more understanding has been obtained. For example, the model is

sparse (few variables). It is a well-known results in the field of perception that only 5

to 6 variables can be easily understood by humans [141,145]. Furthermore unknowns

nonlinear interactions between variables have been discovered using our approach. It

has to be mentioned that our methodology is suitable for big data: it can handle the

3 attributes of big data: Volume, Velocity and Variety.

In the future, we are planing to use the same methodology to other medical

and nursing problems. It is important to work together with practitioners to validate
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the results but we are willing to make the methodology nearly automatic and usable

by any person that does not have a strong background in machine learning.
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CHAPTER 3
A MACHINE-LEARNING-ENHANCED HIERARCHICAL

MULTISCALE METHOD FOR BRIDGING FROM MOLECULAR
DYNAMICS TO CONTINUA

This Chapter is based on the collaboration with Professor Shaoping Xiao. My

contribution is in the experimental part and the implementation of Machine Learning

technics. My contribution is roughly 35% of this Chapter, therefore, I will not present

this Chapter during the comprehensive exam.

3.1 Introduction for Chapter 3

To accelerate and foster the maturation of technology in designing novel en-

gineering materials and devices, numerical methods [92] play an important role in

exploiting new engineering design procedures. Recent developments in nanotechnol-

ogy demand that molecular building blocks complement and enhance new engineering

techniques at the macroscale [153–155]. Therefore, an aggressive development of new

computational methods, including multiscale methods [91], is required to address

complex physical phenomena at various length and time scales for the integrated

design of multiscale, multifunctional materials and products [100].

Multiscale methods have been categorized into two classes: concurrent and

hierarchical multiscale methods. Concurrent multiscale methods [108] employ an ap-

propriate model to couple multiple length/time scales so that simulations at different

scales are conducted simultaneously. Most of the developed concurrent multiscale

methods are atomistic/continuum coupling methods [1, 11, 28, 108, 132, 144, 159], in
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which the molecular model is overlapped with the continuum model. One of the

main challenges in concurrent multiscale methods is how to couple the scales [34,134]

without spurious nonphysical phenomena occurring at scale interfaces or overlapping

domains. This challenge motivates recent state-of-the-art developments in concurrent

multiscale modeling and simulation [41,119,135].

On the contrary, the scale-coupling or scale-overlapping challenge in concur-

rent multiscale methods doesn’t exist in hierarchical approaches [133], in which the

molecular and continuum models are simulated sequentially. Indeed, researchers pay

more attention to how to pass information between scales, especially from the molec-

ular model to the continuum model. Homogenization, including the Representative

Volume Element (RVE) techniques, is commonly employed to obtain effective material

properties from the molecular model for continuum simulations. The Cauchy-Born

(CB) rule [32] is one of the most-used homogenization techniques. It assumes that the

lattice vectors deform as line elements within a locally homogeneous deformation so

that stress-deformation relationships can be derived. It has been extended to study

curved membranes [8] and crystalline solids with temperature effects [157,158,160][21–

23]. Recently, Ademiloye et al. [2] proposed a hierarchical multiscale model based on

the CB rule to investigate the elastic properties and biomechanical responses of the

erythrocyte membrane. Other than the CB rule, Bogdanor et al. [18] adopted a

homogenization-based reduced-order multiscale computational model to predict the

progressive damage accumulation and failure in composite materials. In addition,

Meng et al. [102] developed a cohesive law to characterize the interfacial properties
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between cellulose nanofibrils by considering the hydrogen bond breaking and reform-

ing at the molecular scale. The developed cohesive model then rendered a superior

toughness in continuum simulations.

On the other hand, the RVE techniques utilize a periodic subdomain in the

molecular model to calculate effective material properties, which are then passed to

the continuum model. Jiang et al. [72] used molecular dynamics (MD) to predict ba-

sic mechanical behaviors, including elastic and damage responses to external loading

conditions. Then, the MD results were used to generate a preliminary elastodamage

model for continuum simulations. Grabowski et al. [40] developed a multiscale electro-

mechanical model to study carbon nanotube (CNT) composites. They used MD sim-

ulations to provide information about the elastic properties and density of polymeric

material and CNTs for simulations at the meso- and macroscales. Subramanian et

al. [131] presented a framework of point-information-to-continuum-level analysis to

characterize the behavior of CNT composites. In their method, the stochastic dis-

tributions obtained from MD simulations provide a basis to simulate local variations

of matrix properties in the continuum model. In addition, Ghaffari et al. [37] stud-

ied the lubricant between sliding solids via MD simulations and passed the friction

coefficient to the continuum model to predict the rolling contact fatigue life.

Recently, due to the development of computer technology and explosive data

generation and consumption, data science and analysis via machine learning (ML)

has become an efficient tool in science and engineering [121]. Machine learning has

been widely applied in the biomedical engineering domain for real-time simulations.
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Jahya et al. [69] used a validated finite element (FE) model of the prostate and its

surrounding structures to generate training data for deep learning (DL), i.e. ML

with artificial neural networks (ANNs). Then, the trained ANN could predict a

three-dimensional phantom deformation based on given input variables, which include

boundary conditions. In another application, Lorente et al. [95] used ML regression

models, including three tree-based methods and two simpler ones, to simulate the

biomechanical behaviors of the human liver during breathing in real time.

In the community of computational mechanics and materials science, data sci-

ences and informatics [70] have been used to accelerate materials development and

deployment. Kalidindi et al. [74] described a few computational protocols to acceler-

ate significantly the process of building microstructure informatics in the integrated

computational materials engineering infrastructure. Gupta et al. [44] used a data

science approach to establish reduced-order linkages between the material microscale

internal structure and its associated macroscale properties. Their training dataset

was generated from the mechanical responses of an ensemble of representative mi-

crostructures based on FE simulations. In molecular simulations, ML has been used

to predict molecular properties [47] for accurate atomistic simulations. Chen et al. [21]

presented a highly accurate force field for molybdenum by ML on a large material

dataset. In a similar work, Glielmo et al. [39] proposed a novel scheme to predict

atomic forces as vector quantities by ML regression. Artrith and Urban [9] imple-

mented ANN potentials in atomistic material simulations to study titanium dioxide

(TiO2). Bélisle et al. [13] evaluated a few ML techniques to predict material proper-
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ties from training data obtained via MD simulations. In addition, Ibanez et al. [64,65]

discussed the difficulties in the data-driven or data-intensive approaches that link ex-

perimental data to numerical simulations. They proposed the solution by using a

data-driven inverse approach to generate the whole constitutive manifold from few

complex experimental tests.

A few works have been done by using ML in multiscale modeling and simula-

tion. Matouš et al. [97] reviewed predictive nonlinear theories for multiscale modeling

of heterogeneous materials. They discussed a predictive image-based multiscale ma-

terial model, in which statistically representative unit cells were generated via ML

to optimally preserve the statistical description of the microstructure. Le et al. [83]

employed ANNs and proposed a decoupled computational homogenization method

for nonlinear elastic materials. In their method, the training samples of the effec-

tive potential were computed through random sampling in the parameter space, and

then ANNs were used to approximate the surface response and to derive the macro-

scopic stress and tangent tensor components. Liu et al. [93] developed a data-driven

approach to predict the behavior of general heterogeneous materials under inelastic

deformation. One of their innovations was using an unsupervised clustering algo-

rithm to homogenize the local features of the material microstructure into a group

of clusters. This research group [94] recently developed a microstructural database

based on the self-consistent clustering analysis to accurately predict a nonlinear ma-

terial response. In another pioneering work, Fritzen and Kunc [35] used a data-driven

approach to investigate the nonlinear behavior of materials with a three-dimensional
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microstructure. They performed finite element method (FEM) simulations on the

microstructural level first, and the generated simulation data then served as input for

a reduced-order model at the macroscale level.

In this Chapter, we propose an alternative data-driven approach by using ML

to pass information from the molecular model to the continuum model in a hierar-

chical multiscale framework. First, MD simulations are conducted to generate the

dataset, including training and testing sets, in which the input variables contain de-

formation and temperature while the output variables are stress components and

material failure mode. Then, the generated data is used to train several ML classifi-

cation and regression models. Finally, the well-trained learning machines are directly

implemented in continuum simulations to predict material failure mode and stress

components. In this approach, neither constitutive relations nor effective material

properties are explicitly derived as achieved in existing hierarchical multiscale meth-

ods. The learning machines serve as "black boxes" to replace constitutive relations

and failure mode decisions in the continuum model. Such "black boxes" are trained

based on the dataset from molecular simulations; therefore, the propose scheme is

physical-based and data-driven.

The outline of this Chapter is described as follows. After the introduction,

MD simulations and data collection are described in Section 2. The examples in-

clude a one-dimensional molecule chain and an aluminum crystalline solid. Sections

3 describes the proposed ML-enhanced hierarchical multiscale modeling as well as

the ML regression and classification algorithms. Details about the training processes
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are also explained. Continuum modeling and simulation with the implementation of

ML-trained predictive models are discussed in Section 4 followed by conclusions and

future outlook.

3.2 Molecular Dynamics Simulations

Molecular dynamics has been a powerful tool to elucidate physical phenomena

at the nanoscale [107, 152, 154, 156]. In MD simulations, the atoms or molecules in

the simulated system follow the laws of classical mechanics. The motion of an atom,

e.g. atom i, with mass mi, is due to its interaction with other atoms in the system

according to Newton’s second law:

mi
−→a i=

−→
f i= −∇U (−→r i) (3.1)

where −→a i is the acceleration of atom i , and the interatomic force, −→f i, applied on

atom i is derived from the total potential energy U , which is a function of the position

vector, −→r i.

In MD simulations, the accelerations are calculated via Eq. 3.1. The velocity

Verlet method is commonly used to conduct time integrations within the time step

of ∆t to update velocities and displacements:

u (t+ ∆t) = u (t) + v (t) ∆t+ 1
2a (t) ∆t2 (3.2)

a (t+ ∆t) = f (−→r (t+ ∆t))
m

(3.3)
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v (t+ ∆t) = v (t) + ∆t
2 [a (t) + a (t+ ∆t)] (3.4)

In this Chapter, MD simulations are conducted to generate a dataset. Two

examples are considered here: a one-dimensional Lennard-Jones molecule chain and

an aluminum (AL) crystalline solid. The collected dataset includes training and test-

ing samples, which are used to train predictive models, i.e. learning machines, for

predicting stresses and material failure/defect modes. Then, the well-trained predic-

tive models are implemented in the continuum model of the proposed hierarchical

multiscale method.

3.2.1 One-dimensional Lennard-Jones Molecule Chain

We first consider a one-dimensional molecule chain, which contains 1000 atoms,

with periodic boundary conditions. Each atom has a mass of 1.993× 10−26 kg. The

following Lennard-Jones (LJ) 6-12 potential function is employed to describe the

interatomic interactions between the nearest neighboring atoms,

U (l) = 4ε
1

4

(
l0
l

)12

− 1
2

(
l0
l

)6
 (3.5)

where l0 = 1nm is the initial bond length, l is the deformed bond length, and ε =

1.65× 10−18 J is the depth of the energy well.

At given deformation gradient (F ) and temperature (T ), a canonical (NVT)

MD simulation is conducted until the molecule chain reaches a thermodynamic equi-

librium state. Then, the atomic-level Cauchy stress tensor [163] can be calculated
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via

σ =
1
V

∑1
2
∑
i 6=j
rij⊗f ij

 (3.6)

where rij(= ri − rj) represents the interatomic distance between atoms i and j, and

⊗ denotes the tensor product of two vectors. The cross-sectional area is assumed as

1nm2. The sign convention adopted for interatomic forces, f ij, is positive for attrac-

tion and negative for repulsion. Accordingly, a positive stress indicates tension and

a negative stress indicates compression in the one-dimensional case here. It shall be

noted that a temperature-related homogenization technique can theoretically derive

the stress-deformation gradient relation [157,158,160]. However, it was developed for

crystalline solids only and has difficulties for other materials without regular lattice

structures.
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Figure 3.1: Stress-Deformation Gradient Data at Various Temperatures

Figure 3.1 shows the collected stress-deformation gradient data at various tem-

peratures: 300 K, 1000 K and 2000 K. Due to the nature of LJ potential, the stress-

deformation gradient relations exhibit hyperelasticity in compression. Although the

relations, shown in Figure 3.1, have no big differences between each other when tensile

deformation is small, the failure stresses vary significantly at different temperatures.

Figure 3.2 demonstrates the failure modes in terms of deformation gradient and tem-

perature. At a higher temperature, the LJ molecule chain would be broken at a

smaller deformation gradient.

A number of MD simulations are conducted at various deformation gradients
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and temperatures to generate the dataset. To pass the information from the molecular

model to the continuum model in this example, two predictive models need to be

trained. One is a material failure predictive model, in which the input variables are

deformation gradient and temperature, while the output is a Boolean to represent two

different material failure modes: failure or non-failure. The other is a stress predictive

model, in which the input variables are deformation gradient and temperature while

the output target is stress. The above two predictive models will be trained by using

ML classification and regression methods, respectively, based on the corresponding

dataset collected from MD simulations.

Figure 3.2: Failure and Non-Failure Domains
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3.2.2 Aluminum Crystalline Solid

In another example, an FCC Al crystalline solid with <100> orientations in

the X, Y and Z directions is studied at a temperature of 300 K via MD simulations.

The simulated atomistic model contains twelve lattice units in each direction so that

the total number of atoms is 6912. The potential function is a many-body inter-

atomic potential developed by Mishin et al. [109]. Molecular dynamics simulations in

this study are carried out with the Larger-scale Atomic Molecular Massively Parallel

Simulator (LAMMPS) [117]. The time step is 1 fs. Periodic boundary conditions

are employed in each direction, and the deformation, represented by the engineer-

ing strains, is applied in the X − Y plane only to approximate a two-dimensional

simulation model with the plane strain condition.

We first elucidate the mechanical behavior of this FCC Al crystal under uni-

axial tension at 0% shear strain. In MD simulations, the first step is equilibration, in

which the simulated model is equilibrated in the isothermal-isobaric (NPT) ensemble

at a pressure of 0 bar for 20ps. Then, the model is deformed at a constant strain

rate of 5 × 10−7 fs−1 in the X direction only, while no deformations are applied in

the Y and Z directions. This is a strain-free condition, which is different from the

stress-free conditions used in Tschopp and McDowell’s studies [139]. Various strain

rates are tested, and the above strain rate is chosen due to its minimal effect on stress

calculation.
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Figure 3.3: Stress-Strain Relation of an FCC Al Crystal in Uniaxial Tension at 300

K

Figure 3.3 shows the stress-strain relation of the FCC Al crystal under uniaxial

tension up to 50% strain. Due to the Poisson effect, σy is non-zero although εy = 0 .

It can be seen that there are three regions separated by the discontinuities. In Region

1, the Al crystal maintains an almost perfect crystalline structure so that the stress-

strain relation represents nearly elasticity until point A, at which a discontinuity

occurs. Then, dislocation nucleation and growth are observed in Region 2.

Dislocation is one type of defect in crystals, and it occurs when the atoms

are out of position in the crystal structure. Dislocations can be identified by the
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(a) Three-Dimensional View (b) Side View

Figure 3.4: Nucleation of Dislocation in Al Crystal at 15% Strain

centro-symmetry parameter (CSP) [76], which is a metric to quantify the local loss

of centro-symmetry at an atomic position. The non-centro-symmetry environment is

characteristic for most crystal defects, including dislocation. The CSP is calculated

as

CSP =
N/2∑
i=1

∣∣∣ri + ri+N/2

∣∣∣2 (3.7)

where ri and ri+N/2 are position vectors from the central atom to a pair of opposite

neighbors, and N = 12 is the number of nearest neighbors taken into account for

FCC crystals. When an FCC crystal is pulled along a <100> direction, dislocation

always occurs on a <111> plane and in a <110> direction as shown in Figure 3.4.

When the simulated Al crystal is continuously elongated, voids nucleate and

grow. This phenomenon occurs when the stress-strain relationship reaches to Region

3, as shown in Figure 3.3. At the microscale, the nucleation and growth of voids can
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(a) εx = 25% (b) εx = 35%

Figure 3.5: Voids Nucleation and Growth in the Al Crystal

be viewed as the initiation and growth of damage. Once the damage reaches the pre-

defined threshold, a microscale crack initiates. Figure 3.5 illustrates configurations of

Al crystal with voids at various strains.

The uniaxial tension simulation described above is conducted at εxy = 0. We

conduct additional biaxial tension, compression and tension-compression simulations

with the normal strains ranging from -20% to 50%. The similar physical phenomena

of dislocation and void nucleation and growth are observed. The same simulations

are repeated at various shear strains εxy in a range of -20% to 20% to generate the

dataset for ML methods to train the predictive models for continuum modeling and

simulation.

We only consider the plane strain condition at a room temperature of 300 K

in this example. Therefore, in the collected dataset, the input variable of training
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(a) εxy = 0% (b) εxy = 4% (c) εxy = 6%

Figure 3.6: Domain of Material Defect Modes (◦ Defect-Free; • Dislocation; ∆ Void)

and testing samples are strains, including εx, εy, and εxy. The output variables are

either stresses or material defect modes according to the targets of predictive models.

Three predictive models are trained in this example. The first model trained by ML

classification is to predict material defect modes, including defect-free, dislocation

and void modes. The output target is -1, 0, or 1 to represent three different material

defect modes respectively. It shall be noted that Figure 3.3 only shows the case of

uniaxial tension with εxy = 0 and εy = 0. Indeed, the domains of the material defect

modes are three-dimensional in terms of strain components, as shown in Figure 3.6.

The other two predictive models, trained by ML regression, are for stress prediction.

One is to predict the stresses when the material is at the defect-free mode, and the

other is to predict stresses at the dislocation mode. The output targets of both models

are stress components: σx, σy, and σxy. We assume that material failure occurs at

the location where the void mode is predicted.
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3.3 Hierarchical Multiscale Modeling with Machine Learning

Figure 3.7 illustrates the proposed hierarchical multiscale modeling enhanced

by ML for solving dynamic problems of continuum and structural mechanics. As dis-

cussed in the previous section, two types of data are collected via molecular dynamics

simulations. In both types of data, the input variables include strain (or deforma-

tion gradient) and temperature if the temperature effect is considered. However, the

output variables are different. One type of data is for ML to train a material failure

classification model, and the output variable is an integer to represent material fail-

ure or defect mode. Another type of data is for ML to train stress regression models

so that the output variables are stress components. Both failure classification and

stress regression models are implemented in the continuum model to substitute the

explicit constitutive relations, which are commonly used in conventional continuum

simulations. Consequently, information is passed from the molecular model to the

continuum model in our hierarchical multiscale method as shown in Figure 3.7. The

details about training predictive models by ML are described below.
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Figure 3.7: Hierarchical Multiscale Modeling Enhanced by Machine Learning

Support Vector Machines (SVMs) are supervised ML algorithms commonly

used for regression [126], classification [23], and outliers detection. The estimated

output in an SVM nonlinear regression algorithm can be written as

ỹ (x) =
N∑
J=1

(αJ − α∗J)K (xJ ,x) + b (3.8)

where N is the number of training samples, αJ and α∗J are Lagrange multipliers, and

b is the bias. K is the kernel function, which transforms the training data from the

input to the feature space. There are a few optimization algorithms [126], which
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can be used to minimize the error function and to generate predictive models in

SVM regression. Similarly, SVMs can conduct classification tasks by constructing

hyperplanes in a multidimensional space that separates various labeled cases.

SVMs are adopted in the example of the one-dimensional LJ molecule chain.

The input and output variables of data samples are:

x =


F

T

 yR = {σ} or yC = {−1 or 1} (3.9)

where F is the deformation gradient, T is the temperature, and σ is the Cauchy stress.

In addition, 1 represents material non-failure mode while -1 represents material failure

mode. It shall be noted that 90% of the collected dataset is used as the training set,

with the remaining 10% comprising the testing set.

There are a total of 436 data samples of {xI , (yR)I} used to train and test the

stress regression model. The radial basis function (RBF) [22], as the kernel function,

in our SVM training is expressed as

K (xJ ,x) = e−γ‖xJ−x‖2 (3.10)

where γ = 0.1. The Normalized Mean Square Error (NMSE) of testing data is 0.38%.

To train the material failure classification model, a total of 861 data samples

of {xI , (yC)I} are used, and the model accuracy for the testing set is 99%. Figure

3.8 demonstrates the material non-failure/failure interface predicted via the learning

machine and compared with the collected data samples.
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Figure 3.8: The Material Non-Failure/Failure Interface Predicted by Machine Learn-

ing

In the framework of hierarchical multiscale modeling described in Figure 3.7,

if the FEM is employed in continuum simulations, the well-trained predictive models

will be used to predict material failure mode and stresses at each quadrature point

at every iteration. It has been shown that SVMs are computationally intensive [5].

Therefore, in the example of the Al crystalline solid, Extreme Learning Machines

(ELMs) [43, 53], one of the important emergent ML techniques, are adopted. It has

been shown that an ELM is a fast training method for Single-Layer Feed-forward
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Networks (SLFNs) [63]. Therefore, an SLFN is used in our ELM model, as shown in

Figure 3.9. Although a SLFN has three layers of neurons, the term of "Single" stands

for the only layer of linear/nonlinear neurons in the model, and it is the hidden layer.

In addition, the input layer provides input variables, while the output layer targets

output variables.

Figure 3.9: An ELM Model with a Single-Layer Neural Network

The ELM model in Figure 3.9 is described below. Considering a set of N

distinct training samples (xI , yI) where I ∈ [1, N ], input data xI ∈ Rp and corre-

sponding output data yI ∈ Rq. There are L hidden neurons transforming the input

data into a different representation h, which is used as output layer weights to esti-
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mate outputs. There are two steps in the transformation. First, the data is projected

into the hidden layer using the input layer weights, ω, and biases, b. Then, the

projected data is transformed via the transformation functions, ϕ. As a result, the

transformation of the input data can be mathematically expressed as

hj = ϕj
(
ωTj x+ bj

)
= ϕj

( p∑
i=1

ωijxi + bj

)
j = 1 . . . L (3.11)

It is known that the hidden layer is not constrained to have only one type

of transformation function, i.e., activation function, in neurons. Different functions

can be used: linear, sigmoid, hyperbolic tangent, and some radial basis functions

(RBFs) [22, 52]. Particularly, linear neurons learn linear relationships between input

and output data. In addition, the RBF neurons use distances between samples and

centroids as inputs, and any norm including L1, L2, and L∞ norms of distances can

be used. Consequently, the estimated outputs of the kth training sample are then

calculated as

ỹk = βTkh =
L∑
j=1

βjkϕj

( p∑
i=1

ωijxi + bj

)
= yk + εkk = 1 . . . q (3.12)

where εk is the noise, i.e. the estimate residual. The 10-fold cross-validation technique

[90] is used in ELMs training.

It shall be noted that an ELM model can be used for multi-layered feedforward

neural networks [56] as well. As a difference from traditional ML theories, the hidden

neurons don’t need to be tuned in ELM models, and all the parameters of hidden

neurons can be randomly generated and independent of the training data. Indeed,

an ELM [5, 55] can universally approximate any continuous function with almost
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any nonlinear and piecewise hidden neurons. Therefore, it can solve any regression

problem with a desired accuracy when enough hidden neurons and training data are

given. In addition, multi-label classification problems [140] can be handled similarly.

On the other hand, unlike the back-propagation [66] training procedure, there is no

dependence between the input and output weights so a non-iterative linear solution for

the output weights becomes possible. Therefore, it provides a speedup of 5 orders of

magnitude in ELMs compared to Multilayer Perceptron (MLP) [51,122], or a speedup

of 6 orders of magnitude compared to SVMs [25] based on the studies of [5] .

In the Al crystal example, the ELM classification model, used to classify mate-

rial defect modes, is trained with a total of 229,881 data samples, in which the input

and output variables are

x =



εxx

εyy

εxy


, yC = {1, 0 or − 1} (3.13)

where εxx, εyy and εxy are engineering strains. Among the three output classes, 1

represents the material defect-free mode, 0 represents the material dislocation mode,

and -1 represents the material void mode. In the ELM classification without over-

fitting, various numbers of neurons with hyperbolic tangent functions are used, and

the accuracies are listed in Table 3.2. It shall be noted that the ELM neural network

with 2,000 neurons is implemented in the continuum model because it utilizes fewer

neurons but achieves a sufficient accuracy.
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Table 3.1: Accuracies of ELM Classifications

Number of neurons Classification accuracy

100 93.7%

500 97.4%

1,000 97.9%

2,000 98.4%

3,000 98.6%

20,000 99.1%

It has been shown in Figure 3.3 that the stress is dramatically reduced once

voids are nucleated. Therefore, we consider material failure occurring at the location

where material void mode is predicted. Consequently, two ELM regression models

are trained to predict stresses. One is for the material defect-free mode, and the other

is for the material dislocation mode. The input and output variables of data samples

are

x =



εxx

εyy

εxy


,yR =



σxx

σyy

σxy


(3.14)

where σxx, σyy, and σxy are Cauchy stresses. There are 25,278 and 78,084 data

samples collected to train those two predictive models respectively. In the ELM

regression model for defect-free stress prediction, there are 500 nonlinear neurons with
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hyperbolic tangent functions. The NMSEs of the three stress components are 0.02%,

0.03%, and 0.14%, respectively. In the ELM regression neural network for dislocation

stress prediction, there are a total of 3000 nonlinear neurons with hyperbolic tangent

functions in the hidden layer. The NMSEs of the three output stress components are

0.16%, 0.16%, and 4.1%, respectively. It can be seen that the learning machine to

predict stresses in the material dislocation mode has larger NMSEs than the learning

machine for the material defect-free mode. The reason is that stresses vary due to

dislocation nucleation, growth, and movement in the material dislocation mode. More

features, including dislocation density and orientation, need to be considered in ELM

training. In addition, temperature could be an additional feature if the temperature

effect is considered.

3.4 Continuum Modeling and Simulation

3.4.1 One-Dimensional Lennard-Jones Molecule Chain

After the predictive models are trained via SVM methods, shock wave propa-

gation in a 200 µm-long L-J molecule chain is modeled as a continua and simulated

by using FEM. The chain is discretized with 200 two-node elements. Each element

contains 1000 atoms, and the nodal mass is 1.993×10−23kg. The cross-sectional area

is still 1nm2, and the time step is set as 5.0 fs.

We first study the wave propagation along the molecule chain at 300 K when

a square pulse load is applied at the left end of the chain while the right end is

free. This compressive pulse has an amplitude of 1nN and a period of 0.5ps. Figure
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Figure 3.10: Stress Shock Wave Propagation in LJ Molecule Chain Subjected to a

Square Pulse Load at 300K
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3.10 shows the configurations of stress shock wave propagation at four various times:

t1 = 1ps, t2 = 2ps, t3 = 3.5ps, and t4 = 4.5ps. After the compressive pulse is

applied, there is a compressive stress shock wave propagating along the chain as

shown in Figure 3.10. It can be seen that the oscillations are generated behind the

shock wave fronts: the loading and unloading wave fronts. Generally, the oscillation

occurs because numerical methods have difficulty reproducing strong discontinuities.

A common solution is using artificial viscosity to smooth the shock wave fronts. In this

Chapter, the flux-corrected transport (FCT) algorithm [151] is applied to eliminate

the oscillations.

Due to the hyperelastic nature of LJ potential when LJ bonds are compressed,

the secant modulus is larger at a higher compressive stress, and the wave speed

is faster. Consequently, the unloading wave front becomes gentler while the loading

wave front remains steep. The phenomena can be observed in the wave profile at time

t2 in Figure 3.10. After the stress wave is reflected by the right end, which is free, the

compressive stress wave becomes a tensile stress wave, and different phenomena are

then observed. Since the stress-deformation gradient relations in Figure 1 indicate

that the secant modulus is lower at a higher tensile stress, the wave speed is slower.

Therefore, in the wave profiles at time t3 and t4 in Figure 3.10, the loading wave

becomes gentler while the unloading becomes steeper.

When a sinusoidal pulse load with an amplitude of 10 nN and a period of 0.5 ps

is applied, the phenomena similar to those shown in Figure 3.11 are observed. After

wave reflection at the right end, the tensile wave propagates. Theoretically, when
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Figure 3.11: Stress Shock Wave Propagation in LJ Molecule Chain Subjected to a

Sine Pulse Load at 2000K (t1 = 1ps, t2 = 2ps, t3 = 4.5ps)
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the tensile tress reaches to a critical level, i.e., the failure stress at the deformation

gradient threshold, the material failure occurs as well as spallation. In our study, the

SVM classification model is used to check each element for failure occurrence. Once

the failure is predicted, the spall thickness and speed are then calculated. Table 2

lists the spall thicknesses and speeds under various temperatures between 300 K and

1800 K. Obviously, at a higher temperature, material failure occurs earlier, so that

the spall has smaller thickness and higher speed.

Table 3.2: Spall Thicknesses and Speeds at Various Temperatures

Temperature (K) Spall thickness (µm) Spall speed (m/s)

300 32 4095.2

600 27 4339.1

900 25 4442.8

1200 22 4687.4

1500 21 4887.8

1800 20 5076.3

3.4.2 Al Crystalline Solid

Here an Al crystalline solid subjected to uniaxial tension is considered. Plane

strain is assumed, and the simulated object has a length of 2 mm and a height of 2
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mm. There is a hole with a radius of 0.15 mm located at the center of the solid. 0.01

µs is chosen as the time step, and a prescribed extension of 0.01 µm is applied on

the top and bottom surfaces of the solid at every time step. Such a small extension

is chosen in order to approximate quasi-static simulations. There are a total of 1766

nodes and 3379 triangular elements in the FEM model as shown in Figure 3.12. Since

three-node linear triangular elements are used in the continuum model, the calculated

strain tensor in each element is a constant at every time step. The failure classification

model is used first to identify material failure (defect) mode for each element. In our

simulation, if the material void mode is detected in an element, the material failure

occurs in this element, and the element becomes a void. Otherwise, for an element

in either material defect-free or dislocation mode, the stress regression model is used

to predict the stress tensor. The above procedure is repeated on each non-failure

element at every time step.
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Figure 3.12: An Al Crystalline Solid Is Subject to Uniaxial Tension

Figure 3.13 illustrates the evolution of strain localization in the simulated Al

crystalline solid under uniaxial tension. It can be clearly noted that the elements

with material dislocation or void modes are detected and shear band paths [127] are

observed. Particularly, micro-cracks are initiated in the element with material void

modes and then form macro-cracks along the shear band paths.
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(a) 6.4% Strain Applied (b) 8.1% Strain Applied

Figure 3.13: Evolution of Strain Localization in a Central-Holed Al Crystalline Solid

3.5 Conclusions for Chapter 3

In the proposed hierarchical multiscale method, ML played an important role

in bridging different scales. The dataset, collected via MD simulations in the molec-

ular model, was used to train a few predictive models, i.e., learning machines, and

then the well-trained learning machines were implemented in continuum modeling

and simulation. The collected dataset represents material physical phenomena at

the nanoscale, including stress-strain relations, dislocation phenomenon, and fail-

ure occurrence. Based on the collected molecular database, either SVMs or ELMs

were trained for evaluation of stress and determination of the material failure/defect

mode, which were related to the macroscale mechanical behaviors: stress response,

shear band phenomenon, and micro/macro-crack initiation and propagation. The ex-
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amples of molecule chain and aluminum crystalline solid demonstrated the proposed

hierarchical modeling and simulation enhanced by ML. Our simulation experience

confirmed that ELMs were faster and more accurate than SVMs. It is expected that

learning machines can catch detailed physical phenomena in the molecular model

and pass the information to the continuum model as long as sufficient neurons with-

out overfitting and proper physical features (i.e., input variables) in the dataset are

provided. Although only simple examples were demonstrated in this Chapter, more

potential in-depth research can be done within the same framework. Of course, the

larger number of the features involved, the more challenges will be raised in big data

collection and mining.

In general, the data science process includes framing the problem, collect-

ing/processing data, exploring data, performing in-depth analysis, and communicat-

ing the results of the analysis. In the engineering domain, the first step of framing a

problem is transforming a physical problem to a mathematical model, which can be

solved by numerical methods, including multiscale methods. In addition, the features

of the dataset, which need to be collected in the next step, must be identified based on

the original physical problem. In the examples discussed in this Chapter, only defor-

mation and temperature were considered as the features. Indeed, more features can

be considered according to the nanostructured materials to be studied and the phys-

ical phenomena to be investigated. For example, to study the mechanical behaviors

of nanocomposites, additional features could include inclusion density, orientation,

and distribution. In another example of studying the role of defects in mechanics of
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materials, defect density, defect size, and dislocation orientation could be considered

as features as well.

The proposed machine-learning-enhanced multiscale method is closely accom-

panied by the rest of the data science process. First, the data collection is con-

ducted via MD simulations in the proposed framework. Generally, a set of randomly

generated input variables initiates one MD simulation and then generates a single

data. Therefore, a large dataset requires intensive MD simulations, especially for

high-dimensional feature spaces. Fortunately, those MD simulations can be run in-

dependently, and researchers can take advantage of current parallel, grid, or cloud

computing techniques. The effort of processing data, i.e., cleaning data, is minimal

because the dataset is collected from physical-based molecular simulations. Next,

based on the physical phenomena that we intend to investigate at the nanoscale and

the messages that we want to pass to the macroscale, data exploration is the step

during which the output targets, including stress, damage initiation and growth, and

failure occurrence, are identified, as shown in this Chapter. Then, the key to perform

in-depth analysis is employing appropriate ML algorithms. In the proposed multiscale

method, the learning machines play an important role in predicting outputs in con-

tinuum simulations at each material point and at every iteration after being trained.

Consequently, a fast-speed learning machine with high accuracy is required in data

analysis to avoid computational intensity in the next step. It is obvious that ELMs,

reinforced by parallelization, offers a much better solution than the others, including

SVMs. In the last step, communicating results is passing the information from the
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molecular model to the continuum model via the well-trained learning machines.

Ideally, MD is one way to sample the ensemble by generating configurations

deterministically at the nanoscale. The domain average is then used to evaluate

mechanical and thermodynamic quantities, including stresses. However, randomly

generated initial configurations and temperature regulations can introduce statistical

noises. For example, the same strain state may result in different stress states at

various MD simulations. To reduce the noises, time averages shall be used as the

ensemble averages to generate output data based on the ergodic hypothesis. On

the other hand, even for big data with such statistical noises, ELMs can provide

confidence intervals around the best predictions.

In this Chapter, only the nano- and macroscales are considered, and learning

machines are employed to pass the information from the molecular model to the

continuum model. Indeed, the hierarchical multiscale model can be extended to

include various scales, and massages can be passed in the same manner. The quantum

scale can be added as the smallest scale. Not only the interatomic forces but also

bond breaking and reforming in the molecular model can be determined by learning

machines, which are trained based on the dataset collected from quantum calculations.

In addition, the microscale or the mesoscale can be added between the nano- and

the macroscales to link nanomechanics and structure mechanics by micromechanics.

Such a bottom-up multiscale strategy will enhance novel material design coupled with

engineering product design, which is usually a top-down process.
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CHAPTER 4
ELM-SOM+: A CONTINUOUS MAPPING FOR VISUALIZATION

4.1 Introduction for Chapter 4

In this Chapter, we propose a new topology-preserving nonlinear dimensional-

ity reduction tool: ELM-SOM+. The method incorporates the idea of SOM, using a

2-D manifold to capture the data topology. However, it creates a continuous projec-

tion instead, meanwhile giving small reconstruction error. We first describe the basic

components of ELM-SOM+, and its applicability in Section II. In Section III, we

successfully present and analyze the results of ELM-SOM+ for nine diverse datasets.

Conclusion and future work are shown in Section IV.

4.2 Methodology

This thesis presents a nonlinear dimensionality reduction method for visual-

ization: ELM-SOM+. This method is based on both Extreme Learning Machine

(ELM) [20, 106] and Self-Organizing Map (SOM). The outline of ELM-SOM+ algo-

rithm is demonstrated in Figure 4.1. At the beginning, the data topology is captured

by SOM, creating a discrete projection Xp of the original data X, in 2-D space. Then,

the initial projection Xp is imitated by an encoder: (ELMENC), which creates a con-

tinuous projection: X̂p. Next, X̂ in the original dimension is reconstructed from X̂p

by a decoder: ELMDEC, generating an approximate version of the original data. This

allows the calculation of the reconstruction error between X̂ andX. Lastly, the recon-

struction error is minimized by optimizing the ELM weights in the ELMENC, which
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improves the quality of the projection: X̂p, therefor, the quality of the reconstruction:

X̂ as well.

Figure 4.1: ELM-SOM Algorithm
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4.2.1 Self-Organizing Maps

SOM is introduced by the Finnish professor Teuvo Kohonen in the 1980s [78].

It is an unsupervised learning tool [29,89,103], and a popular nonlinear dimensionality

reduction tool that uses a predefined 2-D lattice (see Figure 4.2) to capture the

topology of the data in the high dimension [3].

Each node in the lattice attains a weight vector wi in the original d-dimensional

data space as the input vectors x.

At the beginning all the weight vectors are randomly initialized. For each input

vector xk, k ∈ [1, N ], the pairwise distances between xk and every weight vector wi is

calculated. The Best Matching Unit (BMU) for xk is the note whose weight vector

wu has the smallest distance with xk.

When the BMU is found, the lattice weights are updated as:

mi(t+ 1) = mi(t)− ε(t)λ(mBMU ,mi, t)(mi(t)− xk), (4.1)

where ε(t) is the adaption rate, and the λ(mBMU ,mi, t) is neighborhood function

that decide the influence range of the updating. Finally, after a considerable number

of iterations, these weight vectors will converge, hence the SOM is trained.
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Figure 4.2: Self-Organizing Maps

After the training, according to SOM algorithm, each input vector xk, is pro-

jected to the corresponding BMU on the 2-D lattice. Therefore, Self-Organizing

Maps are performing a discrete nonlinear dimensionality reductions.

4.2.2 ELM-SOM+

Self-Organizing Map is a powerful visualization tool to create 2-D projections,

nonetheless, the projection is discrete. The projection is on the pre-defined grid,

which has at most s2 possible values, where s2 is the total number of the nodes in

SOM. As a result, the reconstruction of the data can only be discrete. This Chapter
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extends the original idea of SOM, creating a topology-preserving projection: ELM-

SOM, which is similar to SOM, yet without the limitation of the discrete projection.

In ELM-SOM projection, points that are close in the original space, are projected to

close yet distinguishable places, instead of projecting to the same BMU as SOM does.

Therefore, the ELM-SOM projection is continues. This continuity allows a better

reconstruction of the data. The reconstruction error is used to measure the quality

of the projection [114]. Comparing with SOM, ELM-SOM+ can largely decrease the

reconstruction error. The next paragraphs (Phase-I, II, III and IV) are presenting

the ELM-SOM+ algorithm in detail. They are presented in Figure 4.1.

Phase-I: Learning the Data Topology with SOM: A SOM is built at the

first step of ELM-SOM+ to preserve the topology of the data. For each data point

xi ∈ Rd, i ∈ [1, N ], the BMU of xi is ck ∈ Rd, k ∈ [1, s2]. Each vector ck is a node of

the SOM, and can be seen as a cluster center for the data points. The total number

of the centers is s2, since for simplicity, we define the map to be a square of the size

of s× s. We define the set Ck as the index set for the points whose BMUs are center

ck. For example, ∀j ∈ Ck, xj have the BMU of ck.

For each center ck, the corresponding projection is xpk ∈ R2, k ∈ [1, s2]. After

the SOM training, the data topology is learned by the following transformation:

P (xj) = xpk, ∀j ∈ Ck, (4.2)

where j = [1, . . . , N ], k = [1, . . . , s2].

All the data points in the set Ck have the same projection. The projection
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xpk are discrete in space. In ELM-SOM+, we do not use xpk as the final projection.

However, both Ck and xpk are used as the “input-output” pairs for the next phase of

ELM-SOM+, because Ck and xpk together preserve the topology information of the

data.

Phase-II: Initial reconstruction of the Data with the second ELM: ELMDEC

reconstructs the data from the projection space provided by the SOM onto the original

space. The input is the SOM projection, and the target is the corresponding data

point xi. The following transformation is learned by ELMDEC:

R(x̂pk) = x̂k, k = [1, . . . , s2]. (4.3)

This allows the reconstruction error (Mean Square Error) to be calculated:

E =

N∑
i=1
‖R(x̂pk)− xk‖2

N
. (4.4)

We want to minimize the error E by tuning the model ELMDEC, selecting

the optimal number of neurons n∗B for ELMDEC. For that purpose, we minimize the

Leave-One-Out error for ELMDEC.

By tuning nB, we find an E ′, which similar to the one provided by the original

SOM. This means that we are selecting a continuous projection that is as good as the

SOM projection.

Phase-III: Creating Continuous Projection with ELMENC: Based on the

topology information learned from the SOM, the first ELM: ELMENC is built to
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create the continuous encoding projection. The inputs of the ELMENC are the data

points X. The targets are the corresponding projection Xp learned from the SOM in

phase-I. Thus, ELMENC is trained to link xi ∈ Rd to x̂pi ∈ R2:

P̃ (xi) = x̂pi, i = [1, . . . , N ]. (4.5)

For data points that have the same BMU: xj, j ∈ Ck, the projection are

different, yet similar since although they have the same target values in ELM, their

input values from the original space are different.

The optimal number of hidden neurons (nA) for ELMENC is also selected based

to minimize the LOO error. If there exists too many neurons in ELMENC, it might

lead into an over-fitting problem. In case of the over-fitting, ELMENC learns a perfect

mapping relationship P (xj) = xpk, ∀j ∈ Ck, and projects every data point perfectly

on the target xpk. Thus, the results are exactly the same as SOM for the phase-

I, which also leads to a larger reconstruction error. If we have too few neurons in

ELMENC, the model is not sophisticated enough and is not able to approximate the

transformation P (xj) = xpk, ∀j ∈ Ck. We, therefore, end up with a poor projection

result, as well as a large reconstruction error, and lose the topology information of

the data learned from the phase-I, .

Phase-IV: The linear weights of ELMENC are now tuned using the fminunc

from Matlab. It is based on a Large-Scale Optimization. This algorithm is a subspace

trust region method and is based on the interior-reflective Newton method. Each

iteration involves the approximate solution of a large linear system using the method
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of preconditioned conjugate gradients (PCG). All random weights of the ELMENC

and the ELMDEC are kept constant. The linear weights of the ELMDEC are tuned as

in any traditional ELM model.

The ELM-SOM+ algorithm is summarized as follows: (there is a bug, I will

correct it later.)

Algorithm 4.1 ELM-SOM+ Algorithm
1: Train a SOM, with a size of s× s on the dataset

2: Build ELMDEC, with nB minimizing the LOO error (SOM projection is the input)

3: Build ELMENC, with nA minimizing the LOO error (SOM projection is the out-

put)

4: Project the data with ELMENC

5: Reconstruct the data with ELMDEC

6: Calculate the Reconstruction Error E ′

7: The linear weights of ELMENC are tuned to minimize further E ′

4.3 Experiments

Several experiments are performed to examine the performance of the pro-

posed method on diverse datasets. Our approach is used together with PCA, and

the performances are compared. Two main criteria, reconstruction error, and visual

projection performance are used.
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4.3.1 Data

Nine different and diverse datasets are selected to perform experiments to

evaluate our methodology for different circumstances. These datasets, which are

listed in Table 4.1.

4.3.1.1 Abalone Data

Abalone dataset which has been measured to predict the age of abalone accord-

ing to various physical measurements [10]. This data consists in 4177 instances with

nine different features including gender (Male, Female, and Infant), length, diameter,

height, whole weight, shucked weight, viscera weight, shell weight, and rings.

4.3.1.2 Countries Data

This dataset contains a part of a larger dataset of total wealth estimates and

per capita wealth estimates dataset for 209 countries in different years, in which

regional and income group aggregates are computed for each year [150]. We merely

utilize total wealth estimates in 2005 as our countries dataset which consists of 209

instances and 19 different features including for example: Population, Net foreign

assets, Produced Capital, Crop, Pasture Land, Oil, Natural Gas, Hard coal, Soft

coal, Minerals, and Subsoil Assets.

4.3.1.3 Sculpture Data

This dataset which is widely utilized as a benchmark to recover the neigh-

borhood structure for instance in [142], includes a set of 698 sculpture face images.
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These sculpture images are computer renderings of a 3-D sculpture head under dif-

ferent poses and lighting directions [142]. Each image consists in a 4096-dimensional

vector built from an array of 64 by 64 brightness values of pixels.

4.3.1.4 Glass Identification Data

The Glass Identification data [36], which is utilized in criminal investigation,

consists in 241 instances and nine features. This data is created to classify different

types of glasses.

4.3.1.5 MNIST Handwritten Digits Data

The Modified National Institute of Standards and Technology (MNIST) dataset

consists of 60,000 images of handwritten digits in which the black and white digits

are normalized in size, and centered in a fixed size image. In each image, the center

of gravity lies at the center of the image with 28 by 28 pixels. For simplicity, we

use 1000 image samples, and the dimensionality of each sample vector is 28 × 28 =

784 [84].

4.3.1.6 Wisconsin Breast Cancer Data

The Wisconsin Breast Cancer Data (WBCD) [149] consists in 699 breast mass

pattern instances and nine different measurement features computed from a digitized

image of a fine needle aspirate of a breast mass. Among these patterns 458 of them

are benign samples and 241 are malignant samples.
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4.3.1.7 SantaFeA

The main benchmark of the Santa Fe Time Series Competition, time series

A, is composed of a clean low-dimensional nonlinear and stationary time series with

1,000 observations [146]. Competitors were asked to correctly predict the next 100

observations (SantaFe.A.cont). The performance evaluation done by the Santa Fe

Competition was based on the NMSE errors of prediction found by the competitors.

4.3.1.8 Blood Transfusion

To demonstrate the RFMTC marketing model (a modified version of RFM),

this study adopted the donor database of Blood Transfusion Service Center in Hsin-

Chu City in Taiwan [161]. The center passes their blood transfusion service bus to one

university in Hsin-Chu City to gather blood donated about every three months. To

build a FRMTC model, they selected 748 donors at random from the donor database.

These 748 donor data, each one included R (Recency - months since last donation), F

(Frequency - total number of donation), M (Monetary - total blood donated in c.c.),

T (Time - months since first donation), and a binary variable representing whether

he/she donated blood in March 2007 (1 stand for donating blood; 0 stands for not

donating blood).

4.3.1.9 Wine Quality

The two datasets are related to red and white variants of the Portuguese

"Vinho Verde" wine [26]. Due to privacy and logistic issues, only physicochemical

(inputs) and sensory (the output) variables are available (e.g. there is no data about
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grape types, wine brand, wine selling price, etc.). These datasets can be viewed as

classification or regression tasks. The classes are ordered and not balanced (e.g. there

are munch more normal wines than excellent or poor ones). It is not sure if all input

variables are relevant.

4.3.2 Performance Criteria

We consider two different criteria, reconstruction error and visual projection

performance to evaluate each of utilized methods for these nine different datasets.

The reconstruction error (defined in Eq. 4.4) is calculated to validate how far are the

reconstructed data points from the original data points on average. In other words,

the smaller the value of reconstruction error, the higher the quality of the dimen-

sionality reduction. Reconstruction quality is also validated using visual projection

performance.

4.3.3 Procedure

To compare our novel ELM-SOM+ method with another dimensionality re-

duction methods (PCA), we perform experiments on nine diverse datasets. For each

experiment, we compare the reconstruction errors. Because each data has different

feature variables regarding concept and scaling units, we perform normalization on

each dataset to make each variable have the same influence on pair-wise Euclidean

distances among data points. Besides, for each dataset, we remove response variable

for regression problems and class label variable for classification problems. This final

pre-processing is done to avoid any impact of response variable or class label on the
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visualization. Therefore, we can investigate the strength of dimensionality reduction

and visualization for regression/classification without having any predefined response

variable or class label.

4.3.4 Results

The results of the experiments reveal that our ELM-SOM+ method outper-

forms PCA according to the reconstruction error. Furthermore, ELM-SOM+ is pro-

viding a continuous projection rather than a discrete one in SOM. The results are

listed in Table 4.1.

Table 4.1: Comparison of the Reconstruction Errors

Dataset Name PCA ELM-SOM

Abalone 0.088 0.023

Countries 0.351 0.077

Sculpture 0.564 0.327

Glass 0.493 0.073

Handwritten Digits 0.883 0.677

Breast Cancer 0.368 0.288

SantaFeA 0.222 0.017

Blood Transfusion 0.089 0.020

Wine Quality 0.564 0.418
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4.3.5 Visualizations

For each dataset, we present two graphs: the visualization using PCA and the

visualization using ELM-SOM+.

Figure 4.3 shows ELM-SOM+ for the Abalone dataset. We can see that infant

Abalones are nicely visualized between females and males using ELM-SOM+. Figure

4.4 shows ELM-SOM+ for Countries dataset. The visualization using ELM-SOM+ is

consistent with geopolitical facts. For example, oil producers are projected together.

Figure 4.5 shows ELM-SOM+ for Sculpture dataset. Figure 4.6 shows ELM-SOM+

for Glass dataset. Figure 4.7 shows ELM-SOM+ for MNIST dataset. Figure 4.8

shows ELM-SOM+ for Wisconsin dataset. Figure 4.9 shows ELM-SOM+ for SantaFe

A dataset. Figure 4.10 shows ELM-SOM+ for Blood Transfusion dataset. Figure 4.11

shows ELM-SOM+ for Wine Quality dataset.
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Figure 4.3: Abalone ELM-SOM+ Visualization
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Figure 4.4: Countries ELM-SOM+ Visualization
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Figure 4.5: Sculpture ELM-SOM+ Visualization
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Figure 4.6: Glass ELM-SOM+ Visualization
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Figure 4.7: MNIST ELM-SOM+ Visualization
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Figure 4.8: Wisconsin ELM-SOM+ Visualization
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Figure 4.9: SantaFE A ELM-SOM+ Visualization
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Figure 4.10: Blood Transfusion ELM-SOM+ Visualization



www.manaraa.com

110

-3 -2 -1 0 1 2

x
p
(1)

-3

-2

-1

0

1

2

3

4

x
p
(2

)

Figure 4.11: Wine ELM-SOM+ Visualization

4.4 Conclusions for Chapter 4

According to the performed experiments on diverse datasets, it is shown that

the ELM-SOM+ technique can contribute to an efficient dimensionality reduction.

In different data-based concepts, the ELM-SOM+ decreases the reconstruction error

considerably compared to what PCA does. Furthermore, it can be concluded that

ELM-SOM+ is capable of improving SOM algorithm. It not only has the nonlinearity

feature and suitability for big data but also compensates for the discontinuity of SOM

algorithm. It creates a continuous projection by using two Extreme Learning Machine

models, the first one to perform the dimensionality reduction and the second one to

perform the reconstruction. In the future, we will extend and test ELM-SOM+ for
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big data applications.
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CHAPTER 5
A MODIFIED LANCZOS ALGORITHM FOR FAST

REGULARIZATION OF EXTREME LEARNING MACHINES

5.1 Introduction for Chapter 5

In this Chapter we are interested in the discussion of two common problems

of Artificial Neural Networks (ANNs) [99]: 1) how to process large amount of data

with reasonable computational time? 2) how to select the structure the complexity

and the parameters of ANNs?

Although the significant improvement of the required computational power has

been made for many complex algorithms, enabling the solution of large problems, such

as SVM, and Deep Learning, the volume of data is growing even faster [6]. Therefore,

reducing the computational time for machine learning algorithms is evermore desir-

able. Extreme Learning Machines (ELMs) [4,42,61,82,104] is a type of Randomized

Neural Networks (RNNs) that is known for its fast training speed and good accuracy.

Despite its merits, the performance of ELM is sensitive to the number of neurons.

Underfitting can happen when there are not enough neurons, which leads to a poor

approximation; while too many neurons often leads to overfitting problems, resulting

in poor generalization performance. It is not easy to find the "correct" number of

neurons that keeps the balance between a better network performance and simple

network topology. Regularization is introduced to deal with this particular dilemma.

Many algorithms have been applied to regularize the complexity of ELM, such as L1

regularization like LASSO [125, 138] or L2 regularization as known as Ridge Regres-
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sion or Tikonov regression [105, 115]. Although, these regularization algorithms can

significantly reduce the complexity of ELMs, they can’t give a direct answer to the

"correct" number of neurons, and the performance of ELMs is still largely influenced

by the number of neurons it has. Lanczos Algorithm [80,81] originally was introduced

to approximate the extreme eigenvalues of symmetric matrices. It is a fast iterative

process that is proven to converge quickly [111]. Due to the distinct training process

of ELMs, the last step of training ELMs is an Ordinary Least Square problem, which

can be solved by the Lanczos Algorithm. This Chapter presents a modified Lanczos

Algorithm for ELMs that can speed up the training process, but more importantly

does regularization of ELMs and allows ELMs to have a very large number of neu-

rons, while not encountering overfitting problems. In other words, Lanczos ELM can

reduce the computational time for the model selection, and just use a large number

of neurons to generate the robust outcome without overfitting.

In the Section 5.2 the original Lanczos Algorithm is presented. We then de-

scribe how to use the Lanczos Algorithm to solve a symmetric linear system. This is

presented in Section 5.3. The proposed Lanczos ELM is explained in detail in Section

5.4, followed by the experiments to show the performance of Lanczos ELM on four

diverse datasets in Section 5.5. Finally the conclusion is drawn in Section 5.6.

5.2 The Lanczos Algorithm

This Section presents the original Lanczos Algorithm as in [80, 81, 111, 113].

The basic Lanczos Algorithm for tridiagonalization of a symmetric N ×N matrix A



www.manaraa.com

114

computes a sequence of Lanczos vectors qj and scalars αj, βj at the jth step, following

the well-know iteration rules:

Algorithm 5.1 Lanczos Algorithm
1: Initialization: r0, r0 6= 0; q0 = 0; β1 = ‖r0‖

2: for j = 1, 2, 3, ... do

3: qj = rj−1/βj

4: uj = Aqj − βjqj−1

5: αj = uj
∗qj

6: rj = uj − αjqj

7: βj+1 = ‖rj‖

8: end for

Note: The ∗ sign is the (conjugate) transpose of a matrix.

To summarize, the Iteration process can be written as:

rj = βj+1qj+1 = Aqj − αjqj − βjqj−1. (5.1)

The matrix form of The fist j step is:

AQj − QjZj = βj+1qj+1e
∗
j . (5.2)

In this equation, Qj ∈ RN×j is composed by the orthonormal Lanczos vectors qj ,
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Qj = (q1, ..., qj) and

Qj
∗Qj = Ij . (5.3)

ej is the j’s column of the j × j identity matrix Ij . Zj is the tridiagonalization of

matrix A:

Zj =



α1 β2 0 . . . 0

β2 α2 β3 0
... . . . . . . . . . ...

0 βj−1 αj−1 βj

0 . . . 0 βj αj



(5.4)

.

In this Section, the termination criteria for Lanczos Algorithm is skipped, since

it is with little relevance to the problems in this Chapter. Usually the iteration will

stop with j << N . If j = N , the eigenvalues and eigenvectors of Zj is the also the

eigenvalues and eigenvectors of A. The detail can be fond in [112].

5.3 Lanczos Algorithm for Solving Symmetric Linear Systems

Although Lanczos Algorithm was introduced for the eigenvalue and eigenvector

problems initially, it can be applied to solve the symmetric linear systems. For a linear

system:

Aθ = Y (5.5)
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where, A ∈ RN×N is a symmetric coefficient matrix, the true solution is θ = A−1Y.

Usually, the on-hand initial approximation is θa, which leads to an initial residual

term r0 = Y − Aθa. If no such initial approximation is available, then take θa =

0. After the rearrangement of the problem, the target of solving the linear system

becomes finding the correction term θc that is the solution for the non-singular N -

rowed equation:

Aθc = r0 (5.6)

Lanczos Algorithm solves the symmetric linear system in 5.6 by finding improving

approximations θj, whose residual gradually approaches r0, throughout the iteration

process. The iteration is accomplished by computing a sequence of Lanczos vectors

qj and scalars αj, βj at the jth step, following the Lanczos iteration rules as in

Algorithm 5.1. To reach the True solution, j = N iterations must be done, and xN

is solved by:

θN = QNZN
−1β1e1. (5.7)

The proof for equation 5.7 can be fond in [112]. To summarize:
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Algorithm 5.2 Lanczos Algorithm for solving symmetric linear systems
1: Initialization: r0 = Y (For simplicity only. Other initialization can also be ap-

plied); q0 = 0; β1 = ‖r0‖

2: for j = 1, 2, 3, ...N do

3: qj = rj−1/βj

4: αj = qTj Aqj

5: rj = Aqj − qjαj − qj−1βj

6: βj+1 = ‖rj‖

7: end for

8: θN = QNZN
−1β1e1

Lanczos Algorithm usually is used for approximating the solution of a symmet-

ric linear system. Thus a more common situation is that the algorithm terminates

before N iterations, once the residual norm decreases below the desired threshold.

The details can be found in [112]. Since in this Chapter we are focusing on the regu-

larization effect of Lanczos Algorithm and always converges to the true solution with

N iterations, the discussion about the earlier termination is not included, but keep in

mind that the earlier termination can also be applied to further speed-up the ELMs.

5.4 Iterative Lanczos ELM

From the Section 2.3.3.2 we know that the last step of ELM is solving a

Ordinary Least Square Regression problem: min
θ
‖Hθ = T ‖2. The direct solution to
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this problem is:

θ = H†T , (5.8)

H† = (HTH)−1HT . (5.9)

Plug equation 5.8 in 5.9. The solution of θ becomes:

θ = (HTH)−1HTT . (5.10)

Note that H ∈ Rm×N . N is the number of neurons in the ELM, and m is the

number of the data samples. Calculating HTH and solving the linear system have a

time complexity of O(N2m).

It will be convenient to rearrange the solution in equation 5.10, to see that it

is equivalent to solve the following leaner system:

(HTH)θ = HTT . (5.11)

HTH is a symmetric matrix and is positive semi-definite (if H has independent

columns then it is positive definite). Reformulating the problem like this allows

Lanczos Algorithm to be applied to solve this linear system, with A = HTH and

Y = HTT . Moreover, HTH is supposed to have high collinearity, because each

column of H is a nonlinear mixture of the same columns of X. Thus only a few

eigenvalues and eigenvectors of HTH are enough to approximate it. Therefore, the

Lanczos Algorithm is efficient for training an ELM. This will be confirmed in the

Section 5.5.

In addition, we have a strong incentive to avoid computing HTH directly
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because of the high time complexity of doing so. Thus, a matrix M is crafted based

on H as showing in equation 5.12 below:

M = Hqj . (5.12)

When applying Lanczos Algorithm, instead of computing HTH, in each Lanc-

zos iteration j only a relatively small matrix Hqj needs to be multiplied. The complete

process of the Iterative Lanczos ELM is as follows:

Algorithm 5.3 Iterative Lanczos ELM
1: Create ELM: generate the hidden layer weights w, generate the hidden layer

output H.

2: Initialize the Lanczos Algorithm r0 = T ; q0 = 0; β1 = ‖r0‖

3: for j = 1, 2, 3, ...N do

4: qj = rj−1/βj

5: αj = MTM

6: rj = Aqj − qjαj − qj−1βj

7: βj+1 = ‖rj‖

8: end for

9: θN = QNZN
−1β1e1

Note that to compute αj = MTM(= qTj HTHqj) only has a time complexity
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of O(Nm) for each Lanczos Iteration. Since the number of necessary iterations k

is greatly smaller than N , the overall complexity is O(Nkm) which is smaller than

O(N2m) (the original complexity for training an ELM).

5.5 Experiments

To examine the performance of Lanczos ELM, several machine learning datasets

are used to test our algorithm. As stated in the introduction, the Lanczos Algorithm

actually performs as a regularization of the ELM, which helps with the ELM model

structure selection — to auto-select the effective number of neurons. It is a regular-

ization since the training error is increased and the validation error is decreased. This

is illustrated in the following experiment.

5.5.1 Datasets

Four different and diverse datasets are selected to perform experiments to

evaluate our methodology for different circumstances.

5.5.1.1 Abalone

Abalone dataset which has been measured to predict the age of abalone accord-

ing to various physical measurements [10]. This data consists in 4177 samples with

nine different features including gender (Male, Female, and Infant), length, diameter,

height, whole weight, shucked weight, viscera weight, shell weight, and rings.
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5.5.1.2 The Boston Housing

The data was originally published by Harrison, D. and Rubinfeld, D.L. in [49].

The Boston Housing Dataset contains information collected by the U.S Census Service

concerning housing in the area of Boston Mass. It was obtained from the StatLib

archive [48], and has been used extensively throughout the literature to benchmark

algorithms. The dataset is small in size with only 506 samples and 14 attributes in

each sample of the dataset.

5.5.1.3 Checkerboard

We created this dataset to test the Lanczos ELM for classification problems.

In this dataset, there are two classes: "red" and "blue" that alternate in each direction.

Each class is surrounded by four blocks of the different class. The data points are

generated randomly with a small noise term. Figure 5.1 is the graph for the dataset.

The dataset only has 2 variables, which are the coordinates of the points, and one

class label.

5.5.1.4 SantaFeA

The main benchmark of the Santa Fe Time Series Competition [129], time

series A, is composed of a clean low-dimensional nonlinear and stationary time series

with 1,000 observations [146]. Competitors were asked to correctly predict the next

100 observations (SantaFe.A.cont). The performance evaluation done by the Santa Fe

Competition was based on the NMSE errors of prediction found by the competitors.
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Figure 5.1: Checkerboard
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5.5.2 Methodology

In this experiment, Lanczos ELM is compared against a regular ELM with

growing number of neurons. The purpose of the experiment is twofold: 1) to test

the regularization effect of Lanczos ELM. 2) to compare the performance of Lanczos

ELM after j iterations with a j-neurons regular ELM.

In order to examine the regularization effect, a small validation set is created.

Both the Lanczos ELM and the regular ELM were trained on the same training set

first and tested on the same validation set. Training errors and validation errors are

calculated for two ELMs, and compared to examine the overfitting problems of the

ELMs.

The Number of neurons: N for both ELMs is pre-determined in the experi-

ment. Typically, N is a very large number comparing with the number of attributes

of the dataset, but is less than the number of samples of the dataset. The results

of the experiment show how to determine the proper number of neurons for the real

applications, which is much less than the N here used in the experiment. Further

discussions are in the Section 5.5.3.

For the Lanczos ELM, N is the number of neurons built in ELM, and the

training and validation errors are calculated with respect to the iterations of the

Lanczos process. For the regular ELM, the number of neurons is growing from 1 to

N , and the training and validation errors are calculated with respect to the number

of neurons of the ELM.
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5.5.3 Results

The experiment results are collected to create the training and validation error

graph for each dataset.

5.5.3.1 Abalone

In Figure 5.2, the blue line is the training error of Lanczos ELM; the red line is

the validation error of Lanczos ELM; the black line is the training error of the regular

ELM; the green line is the validation error of the regular ELM. A few important yet

trivial information can be found from the graph: 1) From two training error line, it

proves that when Lanczos ELM finishes N = 600 iterations it leads to the same result

as the regular ELM with N = 600 has. 2) From the validation and training errors

of Lanczos ELM, it is noticeable that merely 9 iterations of Lanczos ELM can reach

the lowest validation error. Hence the Lanczos ELM should terminate at iteration 9.

Moreover, since Lanczos ELM is utilizing all N neurons, the validation error is even

lower than the best validation error of the regular ELM.

5.5.3.2 The Boston Housing

In Figure 5.3, similar pattern of the four errors can be found: 1) Lanczos ELM

gives the complete solve of the ELM when went through all the iterations. 2) Both

the training and the validation error are lower than the regular ELM. 3) With only a

dozen iterations Lanczos ELM gives the best validation error. Again, this is because

Lanczos ELM is the ELM with N neurons and regularization.
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Figure 5.2: Abalone
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Figure 5.3: The Boston Housing
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Figure 5.4: Checkerboard

5.5.3.3 "Checkerboard"

The "Checkerboard" (Figure 5.4) problem is one harder problem because of the

degeneration of the linear system. Since the number of variables in "Checkerboard" is

only 2, the determinant of the matrix HTH goes to zero very quickly as the dimension

of H grows. This explains the behavior on the right end of the graph. Even though

this is a harder problem, Lanczos ELM still outperforms the regular ELM.

5.5.3.4 SantaFeA

SantaFeA is a Time Series dataset. Figure 5.5 shows that Lanczos ELM has

consistent performance on the time series data as well. Only 7 iterations of Lanczos
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Figure 5.5: SantaFeA

ELM can reach the minimum validation error and outperform the regular ELM.

Hence, the Lanczos ELM should terminate at the 7th iteration, which leads to a

better validation error with less computational time than the regular ELM.

As summarized in Table 5.1, the computational time is on average divided by

20 and the Normalized MSE is reduced by 14%.
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Table 5.1: Comparisons of Errors and Computational Time

LanELM ValE ELM ValE LanELM Time ELM Time

Abalone 0.45 0.46 0.02 0.55

Housing 0.33 0.39 0.003 0.09

SantaFeA 0.13 0.15 0.002 0.04

Checkboard 0.36 0.47 5.0 21.8

5.6 Conclusion for Chapter 5

The experiment above reveals many important merits of the Lanczos ELM.

Although the motivation of applying Lanczos Algorithm to solve ELM is trying to

speed up the ELM algorithm, the results clearly showed that other than the speed

up, Lanczos ELM also performs as a regularized ELM. In terms of speed up, Lanczos

ELM avoids calculating HTH directly, which leads to few times faster of calculation;

Plus, Lanczos ELM only needs a few iterations to reach the minimum validation

error, which leads to a very early termination of the algorithm, hence less calculation

is needed. In terms of the regularization, Lanczos ELM nearly automatically solves

the overfitting problem, hence, avoids the selection the optimal number of neurons.

In general, a large number of neurons can be applied at the initialization, and Lanczos

ELM will determine the optimal number of the iterations by searching the minimum

of the validation errors. The algorithm is very robust that even the initial number of
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neurons varies a lot, the validation error will still converge to the minimum after a

similar number of iterations. This also means that the number of neurons can exceed

the number of samples, yet still not overfit the problem. In addition, since Lanczos

ELM is mainly matrix multiplications, it is naturally parallelized and can benefit

from multi-core clusters for further speed up.
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CHAPTER 6
FUTURE WORK

6.1 ELM-NG-LE

Although ELM-SOM+ can conduct dimensionality reduction very well, it is

limited only to 2-D projection. If the intrinsic dimension of data is not 2-D, ELM-

SOM+ projection can result in large information loss.

There exists better methods to learn the manifold of the data. Growing Neural

Gas Algorithm (GNG) applies a neural network structure and is inspired by SOM.

This method aims at finding a clustering and the structure of the clustering. Laplacian

Eigenmap allows a projection of the GNG structure.

GNG Algorithm combined with LE can further improve ELM-SOM+ Algo-

rithm, because it is not limited to 2-D projection. Instead of initializing with a SOM,

the GNG+LE can be used as the initialization. Then the two ELMs continue update

the manifold and further minimize the reconstruction errors.

6.2 Using ELM-NG-LE for Missing Data Imputation

Since ELM-NG-LE possess the ability to learn the topology of the data, it has

the potential for data imputation as well.

Once the ELM-NG-LE is trained, the encoder, the learned manifold (the

Laplacian Eigenmap), and the decoder are together preserving the topology infor-

mation of the data. The model structure is an autoencoder and is able to reproduce

the data. Once the model is trained, it is able to reconstruct the data with fairly
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small reconstruction error.

First use a subset of the data, which is complete to train the model first.

Then, for the incomplete part of the data, impute a large amount of values that span

the entire possible values (estimated by the observed data). Since the trained model

preserves the data topology, any imputed value that is close to the data manifold will

result in small reconstruction error; on the other hand any imputed value that is not

on this manifold will result in large reconstruction error.

This allows us to draw an reconstruction error curve for this imputation. The

imputation with the lowest error will be applied as the final imputation.

Sometimes, multiple possible imputations may even been found, due to the

manifold of the data is nonlinear.

This method also provides us with a useful side product: the "probability" of

the imputation. If the reconstruction errors for the imputation is normalized, then

the likelyhood for each imputation can be computed.

6.3 ELM-NG-LE for Video Compression

ELM-NG-LE is a dimensionality reduction tool. After captured the topology

of the data, the manifold it learned is in lower dimensional space. It preserves the

data information with minimum information loss.

If the dimension of the manifold is low enough, and ELM-NG-LE can recon-

struct the data from the manifold with a small reconstruction error, therefore, this

algorithm compress the data. Hence, ELM-NG-LE has the potential for video com-
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pression.

Further experiments should be done on this part and test it on video data.
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